NEUROMORPHIC ENGINEERING

Why Can’t a Computer Be
More Like a Brain?

Computer scientists may tout their ma-
chines’ abilities to perform millions or bil-
lions of operations a second, but neuroscien-
tist Christof Koch of the California Institute
of Technology (Caltech) in Pasadena thinks
they need a lesson in humility. “Any creature
vastly outperforms any machine today,” he
says. “Not in logical thought, but in sensing
the environment, smelling, seeing, moving
about.” The lesson, as Caltech’s Carver Mead
recognized in the early 1980s, is that biologi-
cal systems are fantastically efficient at cer-
tain types of computation. Inspired by Mead’s
vision, some computer scientists are taking
this lesson to heart—and they’re using it to
try to build a new kind of computer.

In an effort they call neuromorphics, re-
searchers are capturing in silicon what Ralph
Etienne-Cummings of Southern Illinois Uni-
versity (SIU) in Carbondale likes to call the
“essence” of biological subsystems. Neuro-
morphic engineers, adds Koch, are “essentially
adapting those features, those algorithms,
those tricks that the nervous system came up
with through the last 600 million years.”

Those tricks include neurons’ ability to
change their behavior based on experience
and to work as tiny, autonomous computers
in their own right, performing operations
that might take thousands of transistors in a
conventional computer. By mimicking these
abilities in silicon, says Koch, neuromorphic
engineers are producing “sys-
tems [that] are able to do
many useful tasks that have so
far proved impossible.” Re-
search teams worldwide are
using conventional Very Large
Scale Integrated (VLSI) cir-
cuit technology to build these
new kinds of chips, trying to reproduce ele-
ments of sensing and sense processing from
the animal kingdom.

“Silicon retinas”—eyes on a chip that
sense a scene or pattern and interpret it—are
among the best developed products of this
approach. These systems implement in sili-
con the kinds of neural circuits that control
vision in biological systems, enabling them
to perceive such features of a scene as bright-
ness contrasts and the polarization, or orien-
tation, of light. “We can now go out there
and see the world with eyes that we did not
have before,” says Andreas Andreou of Johns
Hopkins University. Neuromorphic engi-
neers are also developing brainlike hardware
to detect drugs and explosives, to generate
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music, and to allow vehicles to drive them-
selves, to mention just a few ongoing efforts.

Conventional digital computers speak only
in ones and zeros, their millions of transistors
linked into vast arrays of logic gates that re-
quire huge numbers of switchings to perform
the most modest tasks. Even the simplest op-
eration inside a computer, such as multiplica-
tion, requires at least 10,000 switchings. All
this happens serially, in a strict sequence con-
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Holding a line. Koala, a robot guided by a sili-
con retina, faithfully follows a 2.4-meter loop in-
dependent of lighting and surface texture. A
graph shows how a silicon retina responds to
the image of a bar.

trolled by a systemwide clock that synchro-
nizes the activities of every component. Even
so-called parallel supercomputers are, in real-
ity, modest collections of smaller, ordinary
computers joined together.

The brain, on the other hand, is totally
different. As far as anybody knows, there is no
systemwide clock in the brain: A neuron simply
signals its neighbors when it is ready. What's
more, “the individual components are very,
very slow in a brain,” says Koch. Yert the brain
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can perform 10'® operations per second, while
consuming less power than an electric light
bulb. To do the same amount of computation
using a conventional digital chip would con-
sume the output of an entire power station.

This stunning speed and efficiency results
in part from “the massive, massive parallel-
ism” of the brain's hundred million neurons,
all working at the same time, says Koch. It also
reflects the style of computing that goes on
in neurons: analog computing, an approach
that computer scientists have traditionally
shunned. The digital computers of today solve
a problem by imposing a computational
recipe, or algorithm, on general purpose hard-
ware. So a PC can, in principle and with
enough time, solve any problem that a
supercomputer can. Analog computers, by
contrast, embody a specific computational
problem in the actual physics of the hardware.
Where digital computers traffic in ones and
zeros, analog computers use continuously
varying quantities. For example, a set of rods,
springs, and weights can be turned into an
analog computer—a mechanical model—to
rapidly evaluate a bridge design.

Similarly, brains use electrical signals and
varying membrane properties, instead of
stretchy springs and weights, to do their job.
Like the springs in the bridge design, which can
stretch to many different lengths, a neuron has
maybe a hundred internal electrical levels, giv-
ing it far more information content than the
binary on-off of a digital switch. And instead of
treating all inputs alike, as a digital circuit does,
neurons can give added weight to pulses com-
ing from certain favorite neighbors.

What's more, synapses—the junctions
where one neuron receives input from an-
other—act as little memory elements, aware of
their previous inputs. “The circuitry you com-
pute with is also the circuitry that remembers,
in a sense,” says Koch. That property dramati-
cally reduces the need for data to be swapped
during a computation, increasing efficiency.
And like any analog computer, neurons are
much faster than their digital counterparts.

Even though the transistors in standard in-
tegrated circuits are restricted to flipping be-
tween “on” and “off” states, they are capable of
mimicking some of this behavior. Simple cir-
cuits already exist in which transistors are used
in analog mode—not as switches, but as ampli-
fiers that can operate at many different volt-
ages—to perform operations such as mulripli-
cation, division, and subtraction.

Neuromorphic engineering aims to go
much further, by transforming microcircuitry
into an analog computing medium resembling
neural tissue. “If we use that [circuitry] in the
peculiar way we do, we can generate physical
processes that are similar to neurons,” says
Rodney Douglas, who heads the Institute of
Neuroinformatics in Zurich, Switzerland.

Computer scientists have already tried to
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§ SPECIAL NEWS REPORT: SILICON MIMICS LIFE

A Subtler Silicon Cell for Neural Networks

Nature is the model for artificial neural networks. These networks
of processors—either real or simulated on a conventional com-
puter—"“leamn” from experience by adjusting the strength of their
connections, much like networks of real neurons. Small neural nets
have become commonplace, doing tasks such as predicting how
stock prices may fluctuate and recognizing handwritten characters.
But Nabil Farhat of the University of Pennsylvania, Philadelphia,
thinks he can build a better neural net by making its constituent
neurons even closer to biology.

Neural nets traditionally consist of so-called sigmoidal neurons,

periodic modulation of the neuron’s electrically excitable membrane,
just as two beams of light from the same source produce a periodic
pattern of light and dark patches when they interfere with each other.
The oscillation modulates the neuron’s response to later inputs.
Conventional digital circuitry, with its arrays of on-off switches,
can't efficiently mimic this kind of behavior. So Farhat has been
combining resistors, capacitors, and other components into so-called
analog circuits, which can adopt any intermediate state between “on”
and “off.” One proof-of-principle design incorporated two capacitors,
which charge up in parallel as incoming signals build up. Eventually,

circuits that add up incoming signalsun-  6.28
til they reach a fixed threshold and then :
fire themselves. Farhat’s so-called bifur-
cation neurons, in contrast, switch be-
tween different modes of operation—
between regular and chaotic firing, for
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example—depending on subtler fac- $3.14
tors. These include not just the valueofa  §
particular train of incoming signals, but 2
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also the interaction between many in-
coming signals and the neuron’s recent
history. So far, Farhat has made only
single neurons, and he hasn't linked

one capacitor “breaks down,” allowing
current to flow, which switches on a light-
emitting diode. The diode discharges both
capacitors, reversing the breakdown and
allowing the charging to begin again. This
behavior makes the circuit time-sensitive:
Signals arriving when the capacitors have
just been discharged have a different effect
from signals arriving earlier or later.

The latest incarnations of Farhat’s neu-
rons display more complex behavior (see
diagram). When many neural inputs
(spike trains) arrive at the same time, they
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them together into a complete network.
But his latest simulations suggest, he says,
that they could yield neural nets with
more lifelike behavior than has been

Driving Signal Frequency (Hertz)
Nervous behavior. The bifurcation neuron
switches among many different firing modes, de-
pending on the frequency of the signal it receives.

interact to generate an electrical oscilla-
tion, which affects the neuron’s firing.
Small changes in the frequency of this
oscillation, caused by varying input sig-

seen in networks to date, such as the
ability to see, recognize, and even react to the world in real time.

Whether he will succeed is still an open question, says Daniel
Collobert, a neural net expert at France Telecom. But he notes
that Farhat’s bifurcating neuron provides a level of behavioral
complexity “that [artificial] neural networks could not previously
[show], and I guess never will, because of the functional simplicity
of [their] neurons.”

The neurons in traditional nets sacrifice important informa-
tion, because they know only how many spikes reached them in a
given period, but not when each spike arrived. To an ordinary
neuron, the periodic signal 110110110 (where a 1 is a spike)
would be exactly the same as 101101101.

Yet real neuronal nets, in the brain, capture this timing infor-
mation. A neuron fires because incoming signals cumulatively
depolarize the excitable membrane of the neuron’s output device,
the axon. Afterward, there follows a period when the membrane
cannot respond at all to an incoming signal, which gives way to
another slow buildup. A pulse arriving immediately after firing
will have a completely different effect on the output of the neuron
from one that arrives immediately before.

Real neurons also respond differently to signals when they are
correlated than when they arrive separately. Farhat explains that
signals arriving simultaneously through different dendrites produce a

nals, produce huge shifts in the output

behavior. For instance, oscillation frequencies below about
550 hertz produce periodic firing with two spikes per cycle. Just
above this frequency, the output rapidly changes to chaotic firing.
Farhat and his colleagues are now planning to link such neurons
into a full array using optical signals, which should allow them to
create the dense thicket of interconnections needed for a large
neural net. In a paper to be published in the Journal of Intelligent and
Robotic Systems early next year, Farhat describes a computer simula-
tion that offers a glimpse of how such a network would behave. The
bifurcation neurons seem to form “netlets"—subsets of the neurons
that work together. In an even more recent simulation, Farhat
found that the netlets formed a kind of neuroanatomy, with differ-
ent clusters of netlets responding to stimuli from different sources in
the environment. “That’s exactly the same as people observe when
they look at functional MRI [magnetic resonance imaging] and
PET [positron emission tomography] scans of the brain,” Farhat
says. “Depending on the inputs, the stimulus from the outside, or
the cognitive task that the person is engaged in, we see different
parts of the brain firing.” It’s that kind of complexity, Farhat thinks,
that could make his networks of bifurcation neurons capable of
simple abilities that we take for granted. —Sunny Bains

Sunny Bains is a science and engineering writer in Edinburgh, U.K.

mimic some aspects of the brain in so-called
neural nets, networks of “processors” linked by
“synapses”—connections that strengthen or
weaken depending on activity, enabling the
net to learn from experience. But these neu-
ral nets generally aren’t real physical de-
vices—instead, they are simulated ones, run-
ning as software on conventional computers.
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What’s more, their neurons are, with few ex-
ceptions (see sidebar), generally much sim-
plified versions of the real thing. Neuro-
morphics, on the other hand, is an effort to
capture some of the richness of actual neurons
in hardware—transistors, capacitors, and re-
sistors, all fabricated onto silicon chips—in

what is called analog VLS]I, or simply AVLSI.

Besides allowing transistors to operate at
many different voltage levels, neuromorphic
engineers are designing them to serve as both
calculation and memory elements. Work by
Lance Glasser at the Massachusetts Institute of
Technology, and by Mead and his team at
Caltech, has led to the design of a new type of

transistor, the floating gate transistor, which
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can reliably store analog
information as electrical
charge, enabling it to keep
track of previous signals fed
to it. These new transistors
should open the way to
building systems that can
learn from experience, as
neural-net software does, but
more efficiently, because the
hardware itself is learning.
Labs around the world are
already exploiting AVLSI to
build silicon noses, ears, and
especially eyes. At the Uni-
versity of Adelaide in Aus-
tralia, Alireza Moini and his
team have built a succession
of “bug-eye” chips, using a
design abstracted from insect
eyes. One variant senses mo-
tion by tracking regions of changing light in-
tensity—an ability that could lead to collision
sensors for cars. Andreou, together with Kwa-
bena Boahen at Caltech, has built the most
advancedsilicon retina yet, with a resolution of
210 by 230 pixels. And Tamas Roska and his
team at the Computer and Automation Insti-
tute in Budapest, Hungary, have produced a
programmable “visual microprocessor” that
can analyze a scene and swiftly pick out pat-
terns for applications such as medical diagnosis.
In Zurich, Paul Verschure and Giacomo
Indiveri are working on a silicon-retina—

equipped with a silicon retina
that detects a second car ap-
proaching from behind, and de-
signer Alireza Moini.
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controlled robot that can
follow a line across the floor
of their laboratory. “We
showed that we can reliably
track an edge, independent
of colors and textures of the
surface,” says Verschure.
Their robot can stay on
course for more than 100
meters—“the time we got
fed up looking at the device
doing the same thing.”
Mimicking biology does
have its disadvantages. Re-
lying on continuously vary-
ing electrical states rather
than the clearly defined
ones and zeros of digital
computing means that tiny
variations in the compo-
nents may cause them tore-
spond differently to identical inputs. Insilicon
retinas, for example, pixels may vary in perfor-
mance by as much as 20%. The brain can
interpret sensory information reliably in spite
of that kind of variability, thanks to the huge
numbers of interconnections that allow it to
smooth and correct data, says Koch.
Mimicking those dense interconnections is
the field’s other great challenge. “What the
brain has that we do not have is connection
technology,” says Koch. Each cubic centimeter
of the brain contains 100,000 cells and 2 kilo-
meters of wiring, enabling each neuron to talk
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to 10,000 others. “We don’t have that kind of
technology right now.” In the future, optical
interconnections, relying on pulses of light that
can crisscross freely, could solve the wiring
problem. And nearly 10 years ago, the late
Misha Mahowald at Zurich proposed a scheme
to reduce the number of physical connections
needed in a neuromorphic system. In her
method, extended in a collaboration with Dou-
glas, silicon neurons exchange addresses rather
than actual pulses. A sender neuron communi-
cates with its target over a common line link-
ing many neurons, telling it to expect a signal
from a particular address. The receiving neu-
ron then recreates the signal, as if it had come
over a dedicated line from the sender.

Even if they solve these problems, neuro-
morphic engineers are under no illusions about
displacing conventional computing technol-
ogy, which is unbeatable for number crunch-
ing. Ultimately, they hope to create neuro-
morphic sensors that can feed their readings of
the world around them to digital electronics for
subsequent processing, says Koch, who, for ex-
ample, envisages cameras with a neuromorphic
“seeing end” feeding a conventional data-
processing unit. Says SUI's Etienne-Cum-
mings: “If engineers can mimic the benefits of
biological organisms while capitalizing on the
speed of [digital] electronics, the resulting com-
putational systems can be very powerful.”

—Andrew Watson

Andrew Watson is a science writer in Norwich, U.K.

After 50 Years, Self-Replicating Silicon

The workings of living things are an inspira-
tion to avant garde computer scientists, but so
far the simple act of reproduction has them
stymied. In fact, it’s defeated them since the
late 1940s, when the legendary computer sci-
entist John Von Neumann first tried to see
whether a computer could be made to repro-
duce. He managed to conceptualize a self-
replicating computer using cellular auto-
mata—identical computing devices arranged
in a checkerboard pattern that change their
state based on the states of their nearest neigh-
bors. But his scheme called for an enormously
complicated device made of millions of 29-
state cellular automata, if not more. “It was so
big,” says Stanford University’s John Koza,
“nobody has ever even done a simulation.”
Now researchers at the Swiss Federal Insti-
tute of Technology in Lausanne are on the
verge of achieving in practice what Von
Neumann could only work out in theory—and
they are doing so in a far smaller system. In the
September issue of the journal Robotics and
Autonomous Systems, Daniel Mange and his
colleagues report that they have made a self-
repairing, self-replicating version of a special-
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ized computer. It’s able to perform only one
specific task, but they hope to do the same soon
with a “universal” computer—a necessary step,
says Koza, toward creating computers that truly
mimic life by reproducing and evolving.

Like Von Neumann’s scheme, the Swiss
system is based on cells of identical processors,
which they call “biodules.” Each cell contains
a random-access memory and a single field
programmable gate array, which is a collec-
tion of circuits that can be rewired by software,
allowing it to assume new functions (see p.
1931). The biodules are laid out in a two-
dimensional array, with a “mother cell” at one
corner. Each one is programmed with an arti-
ficial chromosome—a string of bits that en-
codes all the information necessary for all the
cells to function together as a computer.

Mange explains that each cell uses the
mother cell as a reference point to calculate
its position in the array, extracts from the bit
string the information that a cell at that po-
sition needs to carry out its particular func-
tions, and wires itself accordingly. The re-
sulting computer can perform just one task:
checking a string of parentheses to see if ev-

ery left parenthesis belongs to a closed pair.
Thesystem isable torepair itself by enlisting
spare cells that sit off to one side of the working
array. When a cell is identified as faulty, its
entire column is deactivated. Then the func-
tions of each column are shifted one column
over, so that a spare column takes over the
function of what used to be the last working
column of the computer. Mange suggests that
such a system might have applications in avi-
onics, for instance, for computers that require
extraordinary fault tolerance, but he admits
that there is a “rather high” price to pay in
efficiency: the need to store the complete “ge-
nome” in every cell. “It’s the same price biology
agrees to pay with every living being to have a
very safe architecture,” he says.
Self-replication is an extension of the
same idea. Mange and his colleagues have
shown that with enough spare cells in the
array, all'of the working cells of the computer
can simply copy themselves into a new set of
cells. Moving on to a self-replicating univer-
sal machine should be relatively easy, says
Mange. “We should be able to realize the
original dream of Von Neumann in the very
near future,” he says.
—Gary Taubes
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