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Toroidal Structure of X-Exonuclease 
Rhett Kovall and Brian W. Matthews 

Structure determination at 2.4 angstrom resolution shows that A-exonuclease consists 
of three subunits that form a toroid. The central channel is funnel shaped, tapering from 
an inner diameter of about 30 angstroms at the wider end to 15 angstroms at the narrow 
end. This is adequate to accommodate the DNA substrate and thus provides a structural 
basis for the ability of the enzyme to sequentially hydrolyze thousands of nucleotides in 
a highly processive manner. The results also suggest the locations of the active sites and 
the constraints that limit cleavage to a single strand. 

DNA exonucleases participate in DNA 
replication, repair, and recombination ( 1  ). 
In particular, processive 5' to 3' single- 
stranded DNA exonucleases are essential 
for generating early DNA intermediates in 
many pathways of prokaryotic and eukary- 
otic homologous recombination (2 ) .  Bac- 
teriophage A encodes its own exonuclease, 
A-exonuclease, which facilitates phage 
DNA recombination through the double- 
strand break repair (DSBR) and single- 
strand annealing pathways (3 ,  4) .  

A-Exonuclease binds a free end of dou- 
ble-stranded DNA and degrades one of 
those strands in the 5' to 3' direction. 
releasing 5' mononucleotides at a rate of 
- 12 nucleotides per second (5). The pro- 
tein requires MgZ+ and the 5'-terminal 
phosphate for activity (5). A-Exonuclease is 
highly processive; it remains bound to DNA 
while it sequentially cleaves -3000 nucle- 
otides (6). 

In the DSBR pathway of recombination, 
the long 3' single-stranded overhangs cre- 
ated bv A-exonuclease are bound bv the 
~scherichia coll recombmation p;otein 
RecA. These single-stranded DNA RecA 

Institute of Molecular Biology, Howard Hughes Medical 
Institute, and Department of Physcs, University of Ore- 
gon, Eugene, OR 97403, USA. 

filaments then undergo strand exchange 
with a hoinologous piece of double-stranded 
DNA (3, 7). In the case of single-strand 
annealinp recombination, the creation of " 

3'  overhangs exposes two homologous sin- 
gle-stranded regions of DNA that anneal 
Lo form the rec-ombinant double-stranded 
molecule independently of RecA (4,  7). 
Analogous pathways of recombination in 
yeast (8) ,  Xenopus oocytes ( 9 ) ,  and mam- 
malian cells (10) also require a processive 
5 '  to 3' single-stranded DNA exonuclease. 

Here we describe the crvstal structure 
of A-exonuclease determined at 2.4 A res- 
olution with the use of multiple isomor- 
phous replacement and anomalous disper- 
sion (Table 1 ). The asvmmetric unit of the 
crystal structure shows that A-exonucle- 
ase. known to be a multimer 1 1  1 ). is in- ~ , ,  

deed a trimer with noncrvstallographic 
threefold symmetry (Fig. 1A).  The three 
protein subunits form a toroid, with a 
tapered channel passing through the mid- 
dle. At  the wide endoof the channel, the 
diameter i: about 30 A ,  and it decreases to 
about 15 A at the narrow end. Although 
the crystal structure determined does not 
include DNA, it appears that the tapered 
channel is large enough to accommodate 
double-stranded DNA at the w ~ d e  end but 
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can accommodate only single-stranded 
DNA at the other end (Fig. 2). The cor- 
respondence between the dimensions o f  
DNA and the protein channel suggests 
that the enzyme actually encloses its sub- 
strate. 

Despite being a DNA-binding protein, 
the molecule carries an overall negative 
charge. This negative potential, however, is 
concentrated away from the channel (Fig. 
1B). 

The structure suggests an explanation 
for the processivity of X-exonuclease (Fig. 
2). Once cleavage is under way the protein 
remains strung l ike a bead o n  the nondi- 
gested strand o f  DNA and remains bound 
until an end o f  the DNA is reached or 
until the protein dissociates in to  mono- 
mers. Conversely, the trimer can bind a 
new DNA strand only at a double-strand- 
ed break, which explains the resistance o f  
closed circular DNA substrates to  hydrol- 

Fig. 1. (A) Rlbbon dlagrarn of the tnmerlc kexo- 
nuclease structure as contained within the asym- 
metric unit of the crystal. The threefold axls is 
approximately perpendicular to the plane of the 
page. The figure was created with MOLSCRIFT 
(31) and rendered wlth RASTER3D (32). (B) Elec- 
trostatic potential surface Of deter- Fig. 2. Proposed model for interaction of A-exonuclease with L. .. ., created with the program 0 (28). The 
mined by GRASP (33) and viewed toward long axis of the DNA colncldes or approximately coincides with the threefold axis of the protein trimer. 
the wider Opening of the central The The tapered channel within the toroldal structure of the protein IS wlde enough to accommodate 

positive reg1on Is dark blue and the double-stranded DNA at one end but only single-stranded DNA at the other. 
negative reglon IS deep red. 

Fig. 3. (A) Stereo drawing showing the overall fold of the trimer of A- calculated with coefficients (F,,,, - Fo,,,) and phases from the re- 
exonuclease with manganese ions (magenta spheres) bound at the puta- fined native structure. The resolution was 2.4 A and the map was con- 
tive active sites. The figure was created with GRASP (33). (B) Map showing toured without averaging at 1 OU where u is the root-mean-square density 
location of bound manganese. Structure amplitudes (F,,,,) were mea- throughout the unit cell. The Mn2+ (green sphere) is bound by the side 
sured for crystals of A-exonuclease soaked for 7 days in the mother li- chains of AspHg and GlulZ9 and the backbone carbonyl of Leu130. Pro- 
quor (Table 1) containing 10 mM MnCI,. Electron density (magenta) was duced with the program 0 (28). 
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ysis (6). As early as 1968, in discussing 
possible mechanisms for the processive 
degradation of nucleic acid chains, Klee 
and Singer (12) stated that "physical en
trapment of the substrate within the en
zyme structure [is a] possible mechanism 
[for processivity]." Two DNA replication 

processivity factors, proliferating cell nu
clear antigen from Saccharomyces cerevisiae 
and the p subunit oiE. coli polymerase III, 
also have toroidal structures (13). These 
proteins are thought to enclose the DNA 
and to function as sliding clamps, enhanc
ing the processivity of DNA polymerase-

The proposed structure of the X-exonu-
clease-DNA complex also explains why the 
degradation is confined to one of the two 
DNA strands. The threefold symmetry of 
the trimer aligns all three subunits parallel 
to the long axis of the DNA. The three 
active sites therefore are similarly aligned 
with respect to one strand of DNA but face 
the other strand of DNA in the opposite 
orientation. 

Although the amino acid residues that 
are involved in catalysis have yet to be 
identified biochemically, a manganese ion 
bound to each protein subunit suggests the 
location of the magnesium binding site 
essential for activity and points to the 
putative locations of the active sites (Fig. 
3A). Mn 2 + can be substituted for Mg2 + in 
X-exonuclease, albeit with a fourfold re
duction in activity (14). The difference in 
electron density between a crystal of X-
exonuclease soaked in MnCl2 and the na
tive structure (Fig. 3B) indicates that 
Mn 2 + is chelated by the side chains of 
Asp119 and Glu129 and the backbone car-
bonyl of Leu130. Further evidence for this 
metal binding site comes from the gado
linium derivative (GdCl2) (Table 1) for 
which the binding sites in the trimer are 
identical to the Mn 2 + sites. Lanthanides 
can substitute at magnesium binding sites 
(14). 

The monomer of X-exonuclease has an 
a/p fold. A search of the Brookhaven 
Data Base with the program Dali (15) did 
not reveal any other protein with the same 
overall fold. There is included within res
idues 15 to 205, however, a subdomain of 
X-exonuclease that consists of two a-heli-
ces and five strands that is similar to the 
type II restriction endonucleases Eco RV 
(16) and Pvu II (17). The region of struc
tural homology encompasses the active 
sites of all three enzymes. This raises the 
possibility of an evolutionary relationship 
between exonucleases and endonucleases. 
The interactions between Mn2 + , Asp119, 
and Glu129 in X-exonuclease are rather 
similar to the interactions between Mg2 + , 
Asp74, and Asp90 in Eco RV and between 
Mg2 + , Asp58, and Glu68 in Pvu II. Lys92 in 
Eco RV is important to the function of the 
active site (18); X-exonuclease has an 
analogous lysine at position 131. The ac
tive sites of X-exonuclease, Eco RI, Bam 
HI, and Klenow fragment (19-21) share 
similarities in the acidic residues that che
late the required Mg2 + . 
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Crystal 

Native I 
Native II 
EMTS 
GdCI2 

Derivative 

EMTS 
GdCI2 

Resolution 

Wavelength 
(A) 

0.984 
0.908 
0.984 
1.710 

Resolution 

3.0 A 
3.3 A 

No. of reflections 

Resolution Complete-
(A) ness (%) 

No. of ob
servations 

Data collection 
30 to 2.6 97.9 
30 to 2.4 98.2 
30 to 2.6 64.7 
30 to 3.3 • 93.1 

No. of 
iso sites 

204,326 
291,671 
168,955 
153,923 

FOM 

Heavy atom statistics 
26.8% 6 
27.9% 3 

0.42 
0.47 

Refinement statistics 

Completeness of data 
Average discrepancy of bond lengths from ideal values 
Average discrepancy of bond angles from ideal values 
Average discrepancy of trigonal planes from ideal values 
Average discrepancy of general planes from ideal values 
Crystallographic residual (R) 

p 
cjsom 

0.70 
0.81 

Unique 
reflections 

48,162 
62,882 
31,948 
23,022 

'•sytn 

(%) 

6.4 (28.7) 
5.5 (24.7) 
7.5(16.1) 

10.1 (25.7) 

Phasing R 
pOWer ^c.anom 

1.31 
0.92 

0.66 
0.62 

30.0 to 2.4 A 
62,855 
97.0% 
0.017 A 
2.6° 
0.019A 
0.018 A 
19.8% 
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Fig. A (A) Multiple isomor- 
phous replacement map, in- 
cluding anomalous disper- 
sion, calculated to 3.0 A reso- 
lution and contoured at l a  
showing residues 169 to 
190, which form two antipa- 
rallel strands connected by a 
turn. (B) Map with coef- 
ficients 2F,,,, - Fc cal- 
culated to 2.4 A resolution 
and contoured at 1 u show- 
ing the same region of sec- 
ondary structure as in (A). 
The structure amplitudes, 
F,, and the phases for the 
map were calculated from 
the current refined model 
(Table 1). Created with the 
program 0 (28). 
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25-Hydroxyvi tamin D, I a-Hydroxylase and 
Vitamin D Synthesis 

Ken-ichi Takeyama, Sachiko Kitanaka, Takashi Sato, 
Masato Kobori, Junn Yanagisawa, Shigeaki Kato* 

Renal 25-hydroxyvitamin D, 1 a-hydroxylase [I a(OH)ase] catalyzes metabolic activation 
of 25- hydroxyvitamin D, into 1 a,25-dihydroxyvitamin D, [I a,25(OH),D3], an active form 
of vitamin D, and is inhibited by la,25(OH),D3. la(OH)ase, which was cloned from the 
kidney of mice lacking the vitamin D receptor (VDR-/- mice), is a member of the P450 
family of enzymes (P450,,,,,). Expression of la(0H)ase was suppressed by 
la,25(OH),D3 in VDR+/+ and VDR+/- mice but not in VDR-/- mice. These results 
indicate that the negative feedback regulation of active vitamin D synthesis is mediated 
by la(0H)ase through liganded VDR. 

Vitamin D is metabolized by sequential receptor for the hormonally active form 
hydroxylations in the liver and kidney to a of vitamin D (VDR) activates the VDR 
family of seco-steroids. The two most bio- (3) ,  with subsequent regulation of physio- 
logically active forms of vitamin D are logical events such as calcium homeostasis 
la,25(OH),D3 and 24R,25-dihydroxyvi- and cellular differentiation and prolifera- 
tamin D, [24R,25(OH),D3] (1, 2). The tion (4). Hydroxylation of 25-hydroxyvi- 
binding of la,25(OH),D3 to the nuclear tamin 'D, [25(OH)D3] is mediated by 
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25 (OH)D, la-hydroxylase [la(OH)ase] 
in the proximal tubule of the kidney. 
la(0H)ase is inhibited by its end product, 
la,25(OH),D3 (5), and activated by 
calciotropic peptide hormones such as cal- 
citonin and parathyroid hormone (6, 7). 
Thus, serum concentrations of 1a,25- 
(OH),D are kept constant. Vitamin D- 
dependent rickets type I (8) may be caused 
by mutations in the lcx(0H)ase gene. Bio- 
chemical analysis of semipurified la- 
(0H)ase protein has suggested that 
la(0H)ase belongs to the P450 family of 
enzymes (9). 

We developed a nuclear receptor-me- 
diated expression system to clone the 
cDNA encoding la(0H)ase. This system 
is based on the fact that a precursor of 
lcx,25(0H),D3, 25(OH)D3, can activate 
the transactivation function of the VDR 
only in the presence of la(0H)ase activ- 
ity. Mice lacking the VDR (VDR-I- 
mice) developed an abnormally high se- 
rum concentration of la,25(OH),D at 7 
weeks, suggesting excessive la(0H)ase 
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