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Age-related macular degeneration (AMD) 
is the most common cause of acquired visual 
impairment in the elderly and is estimated to 
affect at least 11 million individuals in the 
United States {1-3). U.S. studies show that 
mild forms of AMD occur in nearly 30% of 
those 75 years and older, and advanced forms 
occur in about 7% of people in this age group 
(2). Clinically, AMD is divided into two 
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subtypes: 80% of patients have "dry" AMD, 
the hallmarks of which include one or more 
of the following: the presence of cellular 
debris (drusen) in or under the retinal pig­
ment epithelium (RPE), irregularities in the 
pigmentation of the RPE, or geographic at­
rophy; 20% of patients have exudative or 
uwet" AMD, characterized by serous detatch-
ment of the RPE or choroidal neovascular­
ization or both. Severe vision loss is associ­
ated most often with geographic atrophy or 
exudative disease (4, 5). There are no reli­
able therapies for dry AMD, and only about 
5% of patients with the wet subtype are 
candidates for laser photocoagulation thera-

py (4). 
AMD is a multifactorial disorder that is 

associated with environmental risk factors 
such as cigarette smoking, diet, and choles­
terol level (3, 6). Genetic factors also con­
tribute to AMD (7, 8), although genetic 
studies have been confounded by the late 
onset and complex etiology of the disease. 
One approach to identifying the genes re­
sponsible for multifactorial disorders is to 
study inherited diseases with similar pheno-
types. Several hereditary retinal dystrophies 
have phenotypic similarities to AMD. 
Sorsby fundus dystrophy, for example, re­
sembles wet AMD and is caused by muta­
tions in the tissue inhibitor of metallopro-
teinases-3 (TIMP3) gene (9). However, no 
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mutations in TIMP3 or other retina-specific 
genes [for example, those for peripherin/ 
retinal degeneration slow (RDS) or rhodop- 
sin] have been described in either wet or dry 
AMD 110. 1 1 ). ~, , 

We recently identified a photoreceptor- 
specific gene (ABCR, also known as 
STGDI) on human chromosome lp21 that 
is mutated in Stargardt disease (STGD1) 
(1 2). STGDl is the most common form of 
hereditary, recessive macular dystrophy (es- 
timated incidence, 1 in 10,000) and is char- 
acterized by juvenile-to-young adult onset, 
central visual impairment, progressive bilat- 
eral atroohv of the macular RPE and neu- 

L ,  

roepithelium, aiid the frequent appearance 
of orange-vellow flecks distributed around 

u ,  

the macula and the midretinal periphery 
( 1  3). The ABCR protein is a member of the 
adenosine triphosphate (ATPI-binding 
cassette (ABC) transporter superfamily ( 1  2, 
14), which includes active transporters of 
lipids, hydrophobic drugs, and peptides. 
ABCR corresponds to a previously identi- 
fied rod outer segment protein called rim 
protein (RmP) (1 5-1 7). 

Age-related maculopathies have sever- 
al phenotypic similarities with STGD1, 
including the accumulation of drusen in 
and under RPE and the progressive atro- 
phy of the macular RPE (18). These 
changes result in loss of photoreceptor 
function and vision impairment. To  test 
the hypothesis that ABCR defects contrib- 
ute to AMD, we screened for ABCR se- 
quence alterations in two independent 
collections of 96 and 71 (X  = 167) unre- 
lated AMD patients (1 9). Primers were 
designed to amplify each exon of ABCR 
and its corresponding intron junctions. 

Table 1. Prevalence of AMD-associated variants 
in ABCR (23). NA, data not available. 

General 
AMD STGD popula- 

Mutation (n =I 67) (n = 98) tion 
(n = 220) 

Single-strand conformation polymorphism 
(SSCP) and heteroduplex analysis (HA) 
were used to scan for variants; each alter- 
ation was characterized by direct sequenc- 
ing (20). The exons found to be altered in 
AMD were also examined, by identical 
methodology, for variations in 98 unrelat- 
ed STGD1 patients and in 220 racially 
matched popillation controls (1 2, 13, 18, 
19). 

All 51 exons (21) of ABCR were 
screened for variations in each AMD pa- 
tient, and the results were grouped into 
AMD-associated alterations [those found 
in AMD and not in controls or found 
significantly more frequently in AMD 
(Table I ) ]  and other alterations (Table 2). 
A total of 13 different AMD-associated 
alterations were detected in 26 AMD pa- 
tients (16%). Most were missense muta- 
tions in conserved amino acid positions, 
but two deletions representing frame shifts 
and one splice donor site change were 
found also (22) (Table 1) .  Although 33 of 
the 167 patients (20%) had wet AMD, 
ABCR alterations were found in only one 
such patient. Thus, this form of AMD may 
be associated with factors other than 
ABCR alterations. There was no obvious 
correlation between the type of ABCR 
alterations and visual impairment, age of 
detection of retinal pathology, or other 
pathological parameters. Among the 26 
individuals with alterations, 13 (50%) had 
a first- or second-degree relative with 
AMD, which is significantly higher ( P  < 
0.005) than the fraction in the entire 
sample (24%). 

One alteration, Asp21i7 -+ Asn217' 
(D2177N) (231, was present in 7 of the 167 

I 
7 

AMD * * 

AMD patients and in only 1 of 220 con- 
trols, which is a significant difference by 
Fisher's exact test (P  = 0.023). The associ- 
ated retinal pathology ranged from fine 
macular cuticular drusen (age 62 years), to 
normal maculas but extensive extramacular 
and peripheral drusen (ages 72 and 74 
years), to geographic atrophy involving the 
central third of the macula in each eye 
(ages 61 to 86 years). Six patients had a 
G1961E (23) alteration. The associated pa- 
thology ranged from a few tiny juxtafoveal 
drusen in one eye of one patient (age 74 
years), to confluent drusen and drusenoid 
RPE detachments (age 78 years), to various 
forms of soft to calcific macular drusen and 
extensive geographic atrophy ( > 1  disc di- 
ameter) (ages 81 and 82 years). Other al- 
terations were associated with various pat- 
terns of foveal, extrafoveal, and peripheral 
drusen, some with geographic atrophy of 
the RPE. 

The AMD-associated alterations were 
scattered throughout the coding sequence of 
the ABCR gene, although more were located 
toward the 3' end (Fig. 1). Three of the 13 
alterations in AMD patients were also de- 
tected in STGD1 patients, which suggests 
that some mutations that cause recessive 
STGD1 may enhance susceptibility to AMD 
in the heterozygous state (24). Indeed, we 
identified two families in which the parents 
or grandparent of STGD1 probands have 
AMD (former pedigree, Fig. 2). Given the 
limited number of STGDl families screened 
(98) [(12) and this study], it is unclear 
whether the remaining 10 alterations do not 
occur in STGDl or whether they were sim- 
ply not represented in our patient collec- 
tion. In contrast to STGDl mutations, 

Fig. 1. Diagram of theABCR gene with STGD and AMD alterations. Transmembrane domains predicted 
by hydropathy plot are shown as black bars, and the ATP-binding domains are shown as hatched bars. 
AMD-associated alterations are shown above the diagram, and those in STGDI patients are shown 
below. Arrows indicate alterations identified in both STGDI and AMD patients. Asterisks, missense 
mutations; D, deletions; S, splice donor site mutations; X, stop codon-generating mutation. The 
number at the right signifies the last codon. 

-+ A 
R1898H 1(0.6%) 4(4%) 0(0%) 

Table 2. Other variants in ABCR (23). 

GI 961 E 6(3.6%) 8(8%) 0(0%) 
11 970F 1(0.6%) O(O%) O(O%) Alteration AM D STGDI General 
651 9A11 bp 1 (0.6%)i 1 (I %)? 0 (0%) population 
D2177N 7 (4.2%) 0 (0%) 1 (0.45%) 
6568AC 1(0.6%) 0(0%) 0(0%) V643G 1/167 (0.6%) 0/98 (0%) 1/80 (1.25%) 

Totals 26 (1 6%) 13 (13%) 1 (0.45%) g",",",! 0/167 (0%) 1/98 (I %) 1/50 (2%) 
1/167 (0.6%) 13/150 (8.7%) 2/220 (0.9%) 

'A substtut~on to a dfferent amno a c ~ d  iR1 129C) was R943Q 6/127 14.7%) 4/47 (9.5%) 13/80 11 6.25%) 
detected ~n one STGDI patlent, +The two ~nd~v~duals S22551 24/167 (14.4%) 8/98 (8%) 6/58 (1 0.3%) 
w~ th  t hs  var~ant are related (Fig. 2). 
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which map primarily to the highly con- 
served ATP-binding regions of the ABCR 
protein, AMD alterations were found out- 
side these domains (Fig. 1). We have not 
found more than one AMD-associated 
variant in ABCR in any AMD proband, 
which is consistent with a dominant sus- 
ceptibility locus. A thorough comparison 
of the genotypes and the phenotypes of 
large numbers of both STGDl and AMD 
patients will be required to determine the 
significance of this observation and to 
clarify further the inheritance pattern of 
these alterations. 

Most alterations detected in AMD pa- 
tients were missense mutations outside of 
the ATP-binding domains. Conceivably, 
these variant   rote ins could accumulate in 
the rods and, in combination with age and 
other environmental factors, predispose car- 
rier individuals to macular degeneration 
late in life. ABCR mutations are associated 
with a wide range of clinical presentations. 
For example, patients with late-onset Star- 
gardt disease were originally diagnosed with 
fundus flavimaculatus (25), a disease later 
defined to be allelic to STGDl (13, 26). In 
addition, one form of autosomal recessive 
retinitis pigmentosa (RP19) maps to exactly 
the same chromosomal region as STGDl 
and shares some phenotypic features with 
STGDI, which suggests that it might also 
be caused by an ABCR mutation (27). 

The ABCR protein is identical to rim 
protein (RmP), an abundant protein of un- 

Fig. 2. Pedigree segregating AMD and STGDI. 
An STGDl patient (solid square) is shown, whose 
parents and paternal uncle all had AMD (hatched 
symbols). PCR products of ABCR exon 49 from 
the double-stranded region of an SSCP/HA gel 
are shown below the pedigree. The arrow at right 
indicates the 651 9A11 bp mutation in the individ- 
ual with STGD1. He was diagnosed with STGDl 
at age 38, and the relatives with AMD were diag- 
nosed between ages 55 and 70. The mutation 
was inherited from his mother but was not found in 
either of his unaffected siblings (open symbols). 
His daughter also inherited the deletion, and at 
age 35 has normal vision and a normal retinal 
examination. A mutation in the proband's father 
has not yet been identified. 

known function that colocalizes with pe- 
ripherin/RDS to the rod outer segment (1 6, 
17, 28). ABCR binds ATP, which is con- 
sistent with its role as an active transporter 
(29). ABCR is phosphorylated in response 
to light, which suggests that it plays a role 
in phototransduction (30). It has been hy- 
pothesized that ABCR excretes metabolic 
products of phototransduction or lipids used 
by the rod outer segments (12, 16, 17). 

The discovery of specific ABCR alter- 
ations in AMD patients may permit pre- 
symptomatic screening of high-risk individ- 
uals. which in turn mav facilitate earlier 
diagnosis and clinical testing of preventive 
and therapeutic strategies. Functional studies 
of this ABC transporter, including the iden- 
tification of its substrate. mav facilitate the 20. 

. , 

development of drugs that modulate or pre- 
vent AMD. The identification of a large 
number of rare variants in this single gene in 
a common disease suggests that other com- 21. 
plex human disorders may result from muta- 22. 

tions in a gene responsible for a rare Men- 
delian condition with a similar phenotype. 
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