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Encoded by Kaposi's Sarcoma-Associated ceptors (Fig. 2 ~ ) .  

Herpesvirus The recombinant vMIP-I1 protein was 
purified bv Bio-Gel P-30 gel filtration fol- 
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Kaposi's sarcoma-associated herpesvirus encodes a chemokine called vMIP-II. This 
protein displayed a broader spectrum of receptor activities than any mammalian che- 
mokine as it bound with high affinity to a number of both CC and CXC chemokine 
receptors. Binding of vMIP-11, however, was not associated with the normal, rapid 
mobilization of calcium from intracellular stores; instead, it blocked calcium mobilization 
induced by endogenous chemokines. In freshly isolated human monocytes the virally 
encoded vMIP-I1 acted as a potent and efficient antagonist of chemotaxis induced by 
chemokines. Because vMIP-I1 could inhibit cell entry of human immunodeficiency virus 
(HIV) mediated through CCR3 and CCR5 as well as CXCR4, this protein may serve as 
a lead for development of broad-spectrum anti-HIV agents. 

Accumulating evidence indicates that hu- 
man herpesvirus 8 (HHV-8) is the infec- 
tious agent responsible for Kaposi's sarcoma 
in patients with and without HIV infection 
(1 ). Several viral proteins with homologous 
human counterparts involved in cellular 
signaling are encoded by HHV-8 (2). Three 
open reading frames of the HHV-8 genome 
code for chemokine-like proteins with 28 to 
56% amino acid identity to each other and 
about 40% identity to human CC chemo- 
kines (3) (Fig. 1A). We cloned the vMIP-I1 
chemokine by polymerase chain reaction 
(PCR) amplification from a biopsy of a 
Kaposi's sarcoma lesion in an HIV patient 
and found the nucleotide sequence was 
identical to the one in GenBank (4). The 
vMIP-11 gene was ex~ressed in COS-7 cells. 
and we tested the secreted, recombinant 
protein in binding assays with various hu- 
man chemokine receptors and with the hu- 
man cytomegalovirus-encoded US28 recep- 
tor (5). Conditioned medium containing 
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recombinant vMIP-I1 displaced '',I-labeled 
MIP-la ('251-MIP-la) from the human 
CC chemokine receptors CCRl and CCR5 
and from the US28 receptor as well as 
radiolabeled MCP-1 from the human 
CCRZ receptor (Fig. 2A). Surprisingly, 
vMIP-I1 also bound to CXCR4 in competi- 
tion with the labeled CXC chemokine 
SDF-1. However, vMIP-I1 showed low ac- 
tivity on the CXCRZ [interleukin-8B ( IL  
8B) receptor]. It did not interfere with bind- 
ing of labeled IL-8 to CXCRl (IL8A re- 
ceptor) or binding of the unrelated pep- 
tide substance P to its 7TM receptor NK-1. 
Conditioned medium from COS-7 cells 
transfected with the empty expression vec- 

iowed by reversed-phase high-pressure liq- 
uid chromatography (HPLC), and the chro- 
matography was monitored by receptor 
analysis with human CCR5 stably trans- 
fected into HEK-293 cells (Fig. 1B) (6). 
NH,-terminal sequence analysis of the first 
10 residues of the recombinant vMIP-I1 
demonstrated that a 23-amino acid signal 
peptide is removed from the precursor pro- 
tein. Mass spectroscopy of the HPLC-puri- 
fied vMIP-I1 gave a molecular mass of 7964, 
which indicates that a COOH-terminal 
Arg residue encoded by the open reading 
frame is also removed in the secretory path- 
way (theoretical molecular mass of the des- 
Arg protein is 7968). Thus, the vMIP-I1 
sequence in Fig. 1A is likely to be the 
naturally occurring, secretory form of the 
viral protein (7). 

In competition binding assays, HPLC- 
purified vMIP-I1 bound with high affinity 
to human CCRl [median inhibitory con- 
centration (IC,,) = 8.0 + 3.6 nM], CCR5 
(IC,, = 5.2 + 1.9 nM), and CXCR4 (IC50 
= 5.8 + 2.8 nM) receptors and with very 
high affinity to human CCRZ (IC50 = 
0.82 2 0.16 nM) and the cytomegalovirus- 
encoded US28 receptor (IC,, = 0.63 + 
0.20 nM) (binding curves for CCR5, US28, 
and CXCR4 are shown in Fig. 2B). Chem- 
ically synthesized vMIP-I1 (8) gave very 
similar results (data not shown). 

Receptor binding of endogenous chemo- 
kines is normally associated with a rap- 
id, pertussis toxin-sensitive calcium re- 
sponse. Instead, HPLC-purified recombi- 
nant vMIP-I1 induced a slow, prolonged 

' 1 0 " '  2 0 3 0 " " " " '  40 

Fig. 1. (A) Alignment of vMIP-II with various human 
CC chemokines (MIP-la, MIP-lp, RANTES, and 
MCP-1) and human CXC chemokines (IL-8 and S l S o o  50 a 

SDF-1) (32). The sequence of vMIP-II is shown on Zlm E 
P 

gray background and residues in the other chemo- , 
kines that are identical to those of vMIP-II are indi- 500 L 
cated in white on black. Asterisks indicate con- 
served Cys residues. Only the sequences of the YI N 
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presumed mature, secreted proteins are shown. Tlme (mln) 
For vMIP-II NH,-terminal sequence analysis and 
mass spectroscopy of this study showed that a 23-residue signal peptide and a COOH-terminal Arg 
residue are removed from the virally encoded protein during synthesis and secretion in mammalian cells. 
(B) HPLC purification of recombinant vMIP-II expressed in COS-7 cells (solid line) monitored by testing 
altquots for interference with 1251-MIP-la binding to CCRS expressed stably in HEK-293 cells (dashed 
line). A,,,, absorbance at 21 4 nm; AU, absorbance units. 
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calcium response in CHO (Fig. 3A, upper 
left) but not HEK-293 cells stably trans- 
fected with human chemokine receptors 
(data not shown) (9). In contrast to the 
endogenous chemokines, vMIP-I1 was un- 
able to cause rapid mobilization of calcium 
from intracellular stores-that is, increase 
intracellular calcium in the presence of 
EDTA (Fig. 3A). Both the HPLC-purified 
recombinant peptide and vMIP-I1 prepared 
by chemical synthesis in a dose-dependent 
manner blocked the calcium mobilization 
elicited by the relevant human chemokines 
through CCRl,  CCRZ, CCR3, CCR5, and 
CXCR4 (Fig. 3A). In contrast, vMIP-I1 had 
no effect on the calcium response induced 
by IL-8 through CXCRZ (data not shown). 
Thus, in some cellular contexts vMIP-I1 
appears as an agonist-that is, it elicits 
slow, prolonged leakage of extracellular cal- 
cium into the cell (10). But with respect to 
mobilization of intracellular calcium, vMIP- 
I1 is a pure antagonist against the action of 
endogenous chemokines. Activation of two 
distinct calcium signaling pathways through 
the same receptor has recently been shown 
for the mammalian chemokines IL-8 and 
GRO-a acting through CXCRZ (1 1 ). It has 
been demonstrated that the primary biolog- 
ical effect of chemokine chemotaxis is as- 
sociated with the rapid, pertussis toxin- 
sensitive calcium response, in contrast to 
the slow, prolonged calcium response (12). 

The chemotactic property of vMIP-I1 
has been probed in freshly prepared human 
monocytes (1 3). As expected from its lack 
of ability to cause rapid mobilization of 
intracellular calcium and in contrast to the 
endogenous chemokine RANTES, vMIP-I1 
when given alone did not stimulate chemo- 
taxis in the monocytes (Fig. 3B, upper). 
However, vMIP-I1 was an efficient and po- 
tent inhibitor of the chemotactic response 
to RANTES, MIP-la, or MIP-1P in these 
cells (Fig. 3B, lower). Thus, it can be envi- 
sioned that vMIP-I1 is used by HHV-8 to 
block recruitment of leukocytes as part of 
the viral defense mechanism against the 
immune system of its host. Recently, it was 
suggested but not demonstrated that two 
other putative chemokines discovered as 
open reading frames in the genome of the 
human molluscum contagiosum poxvirus 
and a murine cytomegalovirus may act as 
anti-inflammatory agents by blocking che- 
mokine receptors ( 14). 

Although chemokines are often able to 
bind with high affinity to more than one 
receptor subtype, no known human chemo- 
kine has as broad a spectrum of activities as 
vMIP-I1 (15). RANTES and MCP-3, which 
bind to multiple CC chemokine receptors, 
are probably the most promiscuous of the 
human chemokines. But these CC chemo- 
kines do not bind with high affinity to any 

CXC chemokine receptor. Conversely, 
CXC chemokines such as IL-8 have negli- 
gible affinity for CC chemokine receptors. 
Nevertheless, despite relatively low levels of 
primary sequence identity, the monomeric 
forms of CC and CXC chemokines have 
very similar three-dimensional structures 
(1 6). Mutation and chemical modification 
of a single amino acid residue in IL-8 can 
introduce high affinity for this CXC che- 

Fig. 2. Competition 
binding experiments with 
recombinant vMIP-II in 
various chemokine re- 
ceptors. (A) Whole-cell 
binding experiments were 
performed with recom- 
binant vMIP-II in con- 
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1251 radiolabel MlP-la 

D (n = 4) 

mokine on the CCRl receptor where the 
affinity on its natural CXCRl and -2 recep- 
tors is decreased two orders of magnitude 
(17). In the case of vMIP-11, this peptide 
appears to have been optimized by the virus 
to bind to and block multiple human che- 
mokine receptor subtypes. HHV-8 also en- 
codes a chemokine receptor called ORF74 
(18). Although ORF74 binds IL-8 with 
high affinity, this virally encoded recep- 

ditioned medium from 
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COS-7 cells diluted 1 : 10 2 
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cells expressing CCR1, log [chemoklne (M)] 
CCR2, US28, or CXCR4 
stably transfected HEK-293 cells expressing CCR5; or CHO cells stably expressing either CXCR1, 
CXCR2, or the 7TM receptor for the nonchemokine neuropeptide substance P (NK-1). Conditioned 
medium from mock-transfected COS-7 cells was used as a control (open bars). Below the name of each 
of the receptors the chemokine peptide used as radioactively labeled ligand is indicated. Inhibition of 100% 
was defined by homologous displacement. (B) Competition binding experiments with HPLC-purified 
vMIP-II on CCR5 and CXCR4 expressed stably in HEK-293 cells and on US28 expressed transiently in 
COS-7 cells. Values on ordinate represent percent of maximum bound. 
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Fig. 3. Effect of vMIP-II on [Ca2+], in transfected cells and on chemotactic activity of human monocytes. 
(A) Traces of fluctuations in [Ca2+], measured by Fura-2 fluorescence in CHO cells stably transfected 
with various chemokine receptors. All experiments except the one shown in the upper left were done 
with 10 mM EDTA in the extracellular medium to study calcium mobilization only from intracellular stores. 
(Upper left) Upper trace shows effect of 1 O-Q M vMIP-II followed by lo-' M RANTES in cells expressing 
CCR5; lower trace shows an experiment performed under the same conditions but with 10 mM EDTA 
added to the medium. All other panels show the effect of pretreatment with vMIP-II (either a single dose 
of 1 O-' M or a full dose-response series on the calcium mobilization induced by a submaximal dose of 
an appropriate endogenous human chemokine in cells expressing various chemokine receptors: CCR1, 
10-lo M RANTES; CCR2, M MCP-1; CCR3, M MCP-3; CCR5, M RANTES; CXCR4, 
10-8.5 M SDF-la). HPLC-purified recombinant vMIP-II and synthetic vMIP-II gave similar results; the 
experiments with CCR5 were done with recombinant material, and the rest were done with synthetic 
peptide. (B) Chemotaxis of freshly isolated human monocytes. (Upper) Dose-response curve for vMIP-II 
(n = 8) given alone. A single dose-response curve for RANTES is shown for comparison. (Lower) 
Dose-response curves for inhibition by vMIP-II of chemotaxis induced by M RANTES (IC,, for 
vMIP-II = 3.1 nM; n = 5), MIP-la (IC50 = 2.7 nM; n = 2), or MIP-lp (IC,, = 6.2 nM; n = 2). 
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tor is in fact also surprisingly promiscuous, 
as it binds both CXC and CC chemokines 
(19)-just as vMIP-I1 acts as a ligand for 
both CC and CXC chemokine receptors. 

Although CCR5 and CXCR4 are the 
main co-receptors for HIV cell entry (20), 
CCR3 also appears to  be important for HIV 
infection of microglia (2 1 ). Because vMIP- 
I1 binds to all these receptors (22), its abil- 
ity to block HIV cell entry was tested (23). 
T h e  89.6 strain of HIV-1 was used as a con- 
venient probe as it is able to  exploit multi- 
ple chemokine receptors for cell entry (24). 
In U87/CD4 cells, vMIP-I1 could block in- 
fection of strain 89.6 mediated through 
CCR3, CCR5, or CXCR4 (Fig. 4). O n  
CCR5 and CXCR4, vMIP-I1 was less po- 
tent but equally efficient (at higher doses) 
compared with RANTES and SDF-1, re- 
spectively, whereas on  CCR3, vMIP-I1 was 
highly potent and even more efficient 
than RANTES in blocking infection with 
strain 89.6 (Fig. 4). Against the SL-2 
strain of HIV-1, which selectively uses 
CCR5 as co-receptor (25), vMIP-I1 and 
especially RANTES appeared less potent, 
whereas the semisynthetic analog AOP- 
RANTES as previously reported blocked 
infection verv wotentlv (26) (Fie. 4). Sim- 

vMIP-I1 or RANTES (data not  shown). 
Recently it was shown by cotransfection 
with CCR5 in CD4+ cells that  one of the 
other HHV-8-encoded chemokines, 
vMIP-I, can also inhibit transmission of 
CCR5-dependent HIV-1 strains (2).  T h e  
binding profile of a t  least vMIP-11, includ- 
ing several co-receptors for HIV cell entry, 
could make this protein a possible lead for 
development of broad-spectrum therapeu- 
tic agents against HIV infection. 

Conceivably, the original mammalian 
counterpart of the viral MIP was obtained 
by HHV-8 through an act of molecular pi- 
racy, as has been described for other herpes- 
viruses (27). Genetic combinatorial chem- 
istry combined with phenotypic selection 
has optimized the mammalian chemokines 
to benefit the virus-in analogy with meth- 
ods used in pharmaceutical drug develop- 
ment. In the case of vMIP-11, it will be 
interesting to  determine the structural basis 
for the promiscuous receptor recognition as 
well as the chemical modifications the virus 
has exploited to transform the protein into 
an antagonist. 
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3. Three HHV-8-encoded chemokines have been de- 
pos~ted in GenBank [accession numbers U74585 
(vMIP-IA or vMIP-I), U67775 (vMIP-IB or vMIP-II), 
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Hepes buffer containing 1 mM CaCI, and 5 mM 
MgCI, at pH 7.2, supplemented with 0.5% bovine 
serum albumin (BSA) on either transiently transfected 
COS-7 cells or stably transfected CHO or HEK-293 

Fig. 4. Inhibition of HIV.1 infection of US87/CD4 cells as indicated in the figure legends. The incubation 
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Maternal Care, Hippocam pal Glucocorticoid mRNA expression, as well as lower levels of 
both CRH and AVP immunoreactivity (7). 

Receptors, and Hypothalamic-Pituitary-Adrenal ne handling effect on feedback sensitivity 

Responses to Stress 
Dong Liu, Josie Diorio, Beth Tannenbaum, Christian Caldji, 

,Darlene Francis, Alison Freedman, Shakti Sharma, 
Deborah Pearson, Paul M. Plotsky, Michael J. Meaney* 

Variations in maternal care affect the development of individual differences in neuroen- 
docrine responses to stress in rats. As adults, the offspring of mothers that exhibited 
more licking and grooming of pups during the first 1 0  days of life showed reduced plasma 
adrenocorticotropic hormone and corticosterone responses to acute stress, increased 
hippocampal glucocorticoid receptor messenger RNA expression, enhanced glucocor- 
ticoid feedback sensitivity, and decreased levels of hypothalamic corticotropin-releasing 
hormone messenger RNA. Each measure was significantly correlated with the frequency 
of maternal licking and grooming (all r's > -0.6). These findings suggest that maternal 
behavior serves to "program" hypothalamic-pituitary-adrenal responses to stress in the 
offspring. 

Several years ago Levine, Denenberg, and 
others (1 ) showed that the development of 
hypothalamic-pituitary-adrenal (HPA)  re- 
sponses to stress is modified by early en- 
vironmental events, including infantile 
stimulation [or handling (Z)]. As adults, 
animals exposed to brief periods of han- 
dling dailv for the first weeks of life show 
redu&d pituitary adrenocorticotropic hor- 
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mone (ACTH) and adrenal corticosterone 
( the principal glucocorticoid in the rat) 
responses to stress compared with non- 
handled animals (3). These differences are 
apparent as late as 24 to 26 months of age 
(4) ,  indicating that the handling effect on 
HPA function persists throughout life. 

Glucocorticoids act at a number of neural 
sites to exert an  inhibitory, negative-feed- 
back effect over the synthesis of hypotha- 
lamic releasing-factors for ACTH, notably 
corticotropin-releasing hormone (CRH) and 
arginine vasopressin (AVP) (5). Postnatally 
handled animals show enhanced glucocorti- 
coid negative-feedback sensitivity compared 
with nonhandled rats (6) and therefore 
decreased hypothalamic CRH and AVP 

is mediated by an increase in glucocorticoid 
receptor (GR) expression in the hippocam- 
pus (8, 9), a region that has been strongly 
implicated in gl~~cocorticoid negative-feed- 
back regulation (10). The increased hip- 
pocampal GR gene expression is therefore a 
central feature of the handling effect on 
HPA responsivity to stress, resulting in in- 
creased feedback inhibition of CRH and 
AVP synthesis and reduced pituitary ACTH 
release during stress. 

A numbe;of authors (1 1 ) have proposed 
that the effects of postnatal handling are 
mediated by changes in mother-pup inter- 
actions and that the handling manipulation 
itself might map onto naturally occurring 
individual differences in maternal care. Spe- 
cifically, Levine proposed that handling of 
the pups altered the behavior of the mother 
and that these differences in mother-pup 
interactions then mediate the effect of han- 
dling on the development of endocrine and 
behavioral responses to stress. The question, 
then, is how this maternal mediation might 
occur and whether such factors might con- 
tribute to naturally occurring individual dif- 
ferences in HPA responses to stress. 

In the Norway rat, mother-pup contact 
occurs primarily within the context of a 
nest-bout, which begins when the mother 
approaches the litter and gathers the pups 
under her; she then nurses her offspring, 

* - 
intermittently licking and grooming the 
pups (1 2 ,  13). Handling results in changes 
in mother-pup interactions (14). Mothers 
of handled pups spend the same amount of 
time with their litters as mothers of non- 
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