
the  lnutatlon rate must be very hlgh, as only 
a small proportion of cells in these cultures 
17.5%) have a n  S-nhase D N A  content.  T h e  
hlgh level of lnicrosatellite instability in 
subclones isolated from high-density cul- 
tures and the  HPRT mutant strains appears 
to be consistent w ~ t h  the  idea that wide- 
spread catastrophic D N A  synthesis occurs 
in these cells. Thus, the  conditional muta- 
tor phenotype may reflect the  loss of a 
checknoint that  nrevents cells from enter- 
ing the  S phase when el~vironlllental con- 
ditions are not  optimal, whlch 1s not unlike 
the  checkpoint that arrests cells exposed to 
hypoxia (23) .  W i t h  respect to  the  possibil- 
~ t v  of error-nrone renair in  cells malntalned 
at 'high density, it wis recently reported that 
transient exnosure of a mouse t u n o r  cell 
line to hypoxia modestly Increased the  mu- 
tant frequency of a target gene (24).  ivlls- 
match repalr has thus far been prllnarlly 
associated with c o r r e c t i o ~ ~  of D N A  replica- 
tion errors in growing cells, but lnay have 
another f u n c t i o ~ ~  or f~lnctlons outside the  S 
phase (25) .  

Our  observations raise the  nossibllltv 
that lnutatlons in  solue cells may accumu- 
late In a time-dependent manner in the  
absence of growth, as proposed by Strauss 
(26).  Furthermore, because the  majority of 
cells in a tulnor mav not  be in  a m1croen.- 
vironlnent conducive to the  rapid growth 
that occurs in  cell culture, the  conditions In 
high-denslty cultures described here may 
Inore closely resemble conditions in  the  
tumor. 
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Observations of Emission Bands in 
Comet Hale-Bopp 

H e i k e  Rauer e t  al, observed anomalous 
H,Ot and NH,  elnisslon bancis in comet 
~ a l e - ~ o ~ p  (C/1995 01)  at large hel~ocen-  
trlc distances before perlhellon (1 ). T h e  
subject bancis are from benciing vibrational 
transitions, (0,1~,',0)-(0,0,G), of the  A'A, - 
%'B, system of the  two isoelectronic molec- 
ular snecles. Excent a t  the  shortest helio- 
centric distances studied, only elulsslons 
from even bendine vlbratlonal levels were 
observeil, a phenomenon for which existlng 
fluorescence excitation models provide no  
explanation, according to  Rauer e t  al. 

A n  equivalent observation, however, 
bvas made in  conlet Kohoutek by Wehlnger 
et al. ( 2 ) ,  who identified H,O- and attrib- 
uted the  phenolnenon to  fluorescence exci- 
tatloll of lnolecules a t  temperatures below 
50 K. T h e  reason for the  lnisslng vibrational 
bands can be found in the  electronic struc- 
ture of H20-  and NH1 ( 3 ,  4 )  that glves rise 
to optical transitions ~nvolvlng a lower state 
bent asylnlnetrlc rotor w ~ t h  quantum n u n -  
hers ]", N", K,", and Kc" and an  upper state 
linear symmetric rotor with quantum num- 
bers J', N ' ,  and K', the  latter quantum 
n ~ u n b e r  belng equivalent to  Y,' While 
there is no  vibrational level-dependent 
constraint 011 K," values in  the  ground elec- 
tronic state, odd K' vibronic sublevels of 

the  linear excited state are restricted to  
even bendlng vibrational states, while even 
K' sulllevels are assoclatecl with odd benJer 
states. 

Given the  hKL,  = I 1  selection rule of 
the H,O- and N H 2  ALL4, - Y1B1 transi- 
tions, absorption to the  unobserved odd 

i i ~ L  
600 620 640 660 680 700 

Wavelength (nm) 

Fig. 1. Fluorescence excitation spectra calculated 
for the H20i A2A,  - X". system at four tem- 
peratures of the ground-state molecule Calcula- 
t~on assumes I -nm resolution and a uniform spec- 
tral sens~t~vity. 



bender states can only occur from odd Kc," 
levels of the lower state. Population of Kt,'' 
= 1 states requires a minimum rotational 
excitation of 37 cmp '  for H,O- (4)  [32 
cmp '  for NH,  (3)] ,  correspo~lding to  a tem- 
perature of 53 K. W e  calculatecl (Fig. 1)  the  
temperature dependence of H,O' fluores- 
cence exci ta t~on spectra for the  same spec- 
tral range in  1%-hich H 2 0 -  e~niss io~ls  were 
observed by Rauer et al. (1 ). T h e  calcula- 
tions use term values, frequencies, line 
strengths given by Lew (4) ,  and the  meth- 
odology described by Dressler et al. (5, 6) .  
T h e  H,Ot A- state bending vibrational 
assignlnent adopted by Rauer et al. has re- 
cently bee11 revised ( 7 ,  8). T h e  (G,9,0)- 
(0,0,0) band becomes apparent between 15 
and -25 K, suggesting that odd bands 
should be visible closer to perihelion. Thls 
was Indeed the  case for K o h o ~ ~ t e k  (2)  and 
was also observed by Rauer et al. in  Hale- 
Bopp for N H 2  at r ,  < 3 AU (1) .  
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Response: W e  thank Dressler for h ~ s  inter- 
esting colnlnent to our observation of the  
excitation of N H Z  and HIOt in  cornet 
Hale-Boon. His calculation shows that odd 
vibrational bands should become visible a t  
temperatures larger than 25 K and might 
therefore be visible closer to perihelion as 
the  temperature in the  coma increases. 
However, we n~ould like to  ooint out in 
Inore deiail than we could in  our short 
report ( 1  ) that a straightforward interpreta- 
tion of the  observations is not  possible and 
a more detailed model of the  excitation in a 
colnetarv coma is reauired. 

T h e  calculation by Dressler assumes 
therlnal populations of the  lower rotational 
levels and determines relative line intensi- 
ties u~nder fluorescellce excited by a n  un- 
specified source. In  such a case, the  input 
kinetic temperature, TL, is equivalent to the  

rotational excitation temperature, Tex., in 
the comnuted snectrum. However, in  non- 
thermal equilibrium conditio~ls as they are 
found throughout most of the  cometary 
coma, TsXc,  deternlined by the  relative pop- 
ulatlon of the  rotatlo~lal or vibrational lev- 
els, 1s not  generally eclulvalent to Tk. While 
the  absence of the  odd ballcis in a comet a t  
large heliocentric distance is indicative of a 
low rotational TCx, as we pointecl out [page 
191 1, column 3, paragraph 3 in our report 
(1 ) I ,  it does not  allow any c o ~ ~ c l u s ~ o n  to be 
drawn as to a thermal excitation at  a cor- 
respondlng Tk. 

In  comets, a temoerature-deoe11de11t ex- 
citation should play a role only in  the  in- 
nermost, collisionally dolninated coma. 111 
colnet Hale-Bopp, thls collisionally domi- 
nated region is larger than that in other 
comets a t  the  same heliocentric distance 
range as a result of its h ~ g h e r  gas production 
rate. However, throuehout most of the 
coma and in  the  ion tail, the  populations of 
all the  levels-and therefore the  N H I  and 
HzOt emissions-are governed by purely 
radiative processes; they depend o n  the  in- 
coming solar radiation as well as o n  the  " 

molecular characteristics, notably the  
strength of pure rotatlo~lal tra~lsitions with- 
in the  ground state (2) .  Existing resonance 
fluorescence models (3 )  are unable to re- 
nroduce the  observed visibilitv of even and 
odd bands, mainly because they do   lot ac- 
count for the  rotational structure of the  
~nolecule or ion. 

A realistic excitation model of N H I  and 
H,Ot in a cometar\- coma and ion tail must 
t a i e  into account ;hat therlnal rotational 
ea~~i l ibr iuln  does not hold in such low den- 
sity environments. T h e  temporal evolution 
of the  population of rotational levels with 
increasing nucleocentric distance must be 
taken into account, In addition to the  
pumping by solar flux as a result of reso- 
nance fluoresce~lce processes and the  rota- 
tional de-excitation processes lnentloned 
above. T h e  latter are ilnoortant in  the  soe- 
cies in hand because they are in the  hydride 
radicals O H . ' N H ,  and CH. T h e  snectra 
modeled by Dressler show the  effect of tern- 
perature-dependent excitation in therlnal 
equilibrium co~lditions for NH,  and H,Ot. 
Hon~ever,  only a detailed investigation in- 
cluding all significa~lt excitation processes, 
considering the  spatial distribution of the  
emissions, and covering a range of heliocen- 
tric distances will provide a full explanation 
of the  observations. 

A correct treatment of the  populations 
of even and odd levels for N H ,  and H 2 0 L  
is imnortant. Neglectine to  account for the  " 

appropriate selection rules leads to produc- 

tion rates that are underestimated by a fac- 
tor of about 2 near 1 A L  from the  sun (4) .  
For HzOt it was shown (5)  that the  large 
discrepancy of the  ion production rates in  
cornparis011 to ~ t s  parent, water, 1s most 
likely caused by incorrect g-factors for the  
elnisslon bands observed. Furthermore, the  
observations of comet Kohoutek (6 ) ,  cluot- 
ed by Dressler, showed that odd bands of 
H 2 0 t  were weak in a comet still a t  helio- 
centric distances of about 1.4 A L .  Some 
other spectra of the same comet and of 
comet West a t  the  same r,,, however, 
showed these bands (also those of N H 2 )  
with colllparable intensities to the  even 
bands (7) .  A similar remark can be made 
regarding colnet West near 1.6 A L  (8).  

Finally, we would like to thank Dressler 
for making us aware of the  changed assign- 
ments of vibrational levels for H,O-. 
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