This model does not preclude a role for other cell cycle regulators such as Wee1 in the damage response (14). Furthermore, the fact that hChk1 phosphorylated hCdc25A and hCdc25B and that Ser^{216} is conserved among these Cdc25 proteins (19) suggests that hChk1 may regulate other DNA damage checkpoints, such as those controlling the G₁-to-S phase transition, through a similar mechanism.

REFERENCES AND NOTES

- 1. S. J. Elledge, Science 274, 1664 (1996).
- C. Deng et al., Cell 82, 67 (1995); J. Brugarolas et al., Nature 377, 552 (1995); T. Waldman et al., ibid. 381, 713 (1996).
- Degenerate primers GGNGGNGAGT/CT/CT-NATGGAT/CTT and TGGACAGGCCAAAGTC to conserved motifs in the kinase domains of spChk1 were used to screen a human B cell library by PCR. Four of 135 clones showed similarity to spChk1, and one was used to probe 2 × 10⁵ plaques from a λACT human B cell cDNA library. We identified two CHK1 cDNAs.
- 4. M. Kozak, Cell 44, 283 (1986).
- P. Fogarty et al., Curr. Biol. 7, 418 (1997); O. C. M. Sibon et al., Nature 388, 93 (1997).
- K. Laake et al., Genes Chromosomes Cancer 18, 175 (1997); I. Vorechovsky et al., Cancer Res. 56, 2726 (1996); H. Gabra et al., ibid., p. 950.
- 7. Y. Sanchez, C. Wong, S. J. Elledge, unpublished results.
- G. Chen and E. Y. H. P. Lee, J. Biol. Chem. 271, 33693 (1996); N. D. Lakin et al., Oncogene 13, 2707 (1996).
- 9. We made recombinant baculovirus encoding glutathione-S-transferase (GST) fusion proteins to hChk1 (GST-hChk1) or to a mutation of hChk1 in which Asp at position 130 was mutated to Ala [GST-hChk1(D130A)] (bYS71). These recombinants were made by introducing an Nde I site at the first ATG codon of the hChk1 open reading frame using PCR, and subcloning the hChk1 cDNA as an Nde I-Eco RI fragment into pGEX2Tcs, generating pYS45. The Xba I-Eco RI fragment from pYS45 containing GST-hChk1 was subcloned into PVL1393, which was cut with Xba I and Eco RI, generating pYS63. The GST-hChk1(D130A) mutant was generated by PCR, and the Xho I-Xmn I fragment containing the mutation was used to replace the wildtype fragment, generating pYS64. The GSThChk1(D130A) fragment from pYS64 was sublconed into the baculovirus transfer vector by using the Univector plasmid fusion strategy (X. Liu and S. Elledge, unpublished results). Viruses were generated by standard methods (Baculogold, Pharmingen), Recombinant GST-hChk1 protein was isolated from infected Hi5 insect cells on glutathione (GSH) agarose. Cdc25C was cloned into pET15b (Novagen) and purified as outlined by the manufacturer.
- N. C. Walworth, S. Davey, D. Beach, *Nature* 363, 368 (1993); F. al-Khodairy *et al.*, *Mol. Biol. Cell* 5, 147 (1994); N. C. Walworth and R. Bernards, *Science* 271, 353 (1996).
- 11. T. Enoch and P. Nurse, Cell 60, 665 (1990).
- N. Rhind, B. Furnari, P. Russell, Genes Dev. 11, 504 (1997).
- P. Jin, Y. Gu, D. Morgan, J. Cell Biol. 134, 963 (1996).
- M. J. O'Connell, J. M. Raleigh, H. M. Verkade, P Nurse, *EMBO J.* **16**, 545 (1997).
- 15. D. J. Lew and S. Kornbluth, *Curr. Opin. Cell Biol.* 8, 795 (1996).
- Y. Terada, M. Tatsuka, S. Jinno, H. Okayama, *Nature* **376**, 358 (1995).
- Kinase reactions contained GST-hChk1 bound to GSH agarose and either His₆-hCdc25C GST-hCdc25A, GST-hCdc25B, GST-hCdc25C, or GST-hCdc25C (200–256) (amino acids 200 to 256 of Cdc25). Kinase reactions contained 1 to 3 µg of GST-hChk1 or GSThChk1(D130A) protein on beads and soluble substrate

in 20 mM Hepes (pH 7.4), 10 mM MgCl_2, 10 mM MnCl_2, 2 µM adenosine triphosphate (ATP), and 15 µCi of [y-32P]ATP for 30 min at 30°C. To determine the site on Cdc25C phosphorylated by hChk1, we carried out kinase reactions in a buffer consisting of 50 mM tris (pH 7.4), 10 mM MgCl₂, 10 μ M ATP, 1 mM dithio-threitol (DTT), and 10 μ Ci of [γ -³²P]ATP. Proteins were separated by SDS-PAGE, transferred to nitrocellulose membranes, and visualized by autoradiography. The nitrocellulose membrane containing His6-Cdc25C was excised, blocked with 0.5% polyvinylpyrrolidone (PVP-40) in 100 mM acetic acid for 30 min at 37°C, washed six times with water, and digested with TPCK trypsin (Worthington) at a final concentration of 30 mg/ml in 0.1 M NH₄CO₃ (pH 8.0). Further digestion on selected high-pressure liquid chromatography (HPLC) fractions was performed with 2 units of proline-specific endopeptidase (ICN) in 0.1 M sodium phosphate, 5 mM EDTA (pH 7.4) at 37°C for 16 hours. Samples were acidified in 1% trifluoroacetic acid (TFA) and loaded onto a Vydac C18 column (25 cm by 0.46 cm inner diameter), Reverse-phase HPLC was performed at 37°C. Reactions were loaded in 0.1% TFA (buffer A) and eluted with a gradient from 0 to 60% buffer B (90% acetonitrile, 0.095% TFA). Fractions were collected at 0.5-min intervals up to 90 min and counted for radioactivity. Selected fractions were immobilized on Sequenion-AA membrane discs (Millipore) for NH₂-terminal sequencing. Manual Edman degradation was done as described (21) with a coupling and cleavage temperature of 55°C.

- 18. Y. Sanchez et al., data not shown.
- S. Ogg, B. Gabrielli, H. Piwnica-Worms, J. Biol. Chem. 269, 30461 (1994).
- 20. C.-Y. Peng et al., Science 277, 1501 (1997).
- J. E. Bodwell *et al.*, *J. Biol. Chem.* **266**, 7549 (1991); S. Sullivan and T. W. Wong, *Anal. Biochem.* **197**, 65 (1991).
- 22. We thank A. Baldini for assistance with mapping; T. Carr for sharing unpublished information; P. Sen for making the S216A mutants of Cdc2SC; N. Walworth, W. Harper, M. Huang, and J. Bachant for helpful comments; and D. Leibham and J. Thompson for technical assistance. Support was by a NIH postdoctoral fellowship GM17763 to Y.S. and a NIH grant GM44664 to S.J.E. H.P.-W. is an Associate Investigator of the Howard Hughes Medical Institute. S.J.E. is a Pew Scholar in the Biomedical Sciences and an Investigator of the Howard Hughes Medical Institute.

28 May 1997; accepted 4 August 1997

Mitotic and G₂ Checkpoint Control: Regulation of 14-3-3 Protein Binding by Phosphorylation of Cdc25C on Serine-216

Cheng-Yuan Peng, Paul R. Graves, Richard S. Thoma, Zhiqi Wu, Andrey S. Shaw, Helen Piwnica-Worms*

Human Cdc25C is a dual-specificity protein phosphatase that controls entry into mitosis by dephosphorylating the protein kinase Cdc2. Throughout interphase, but not in mitosis, Cdc25C was phosphorylated on serine-216 and bound to members of the highly conserved and ubiquitously expressed family of 14-3-3 proteins. A mutation preventing phosphorylation of serine-216 abrogated 14-3-3 binding. Conditional overexpression of this mutant perturbed mitotic timing and allowed cells to escape the G_2 checkpoint arrest induced by either unreplicated DNA or radiation-induced damage. Chk1, a fission yeast kinase involved in the DNA damage checkpoint response, phosphorylation and 14-3-3 binding negatively regulate Cdc25C and identify Cdc25C as a potential target of checkpoint control in human cells.

A key step in regulating the entry of eukaryotic cells into mitosis is the activation of the protein kinase Cdc2 by the protein phosphatase Cdc25C. A complete under-

R. S. Thoma, Z. Wu, H. Piwnica-Worms, Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA, and Howard Hughes Medical Institute, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.

A. S. Shaw, Department of Pathology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.

*To whom correspondence should be addressed. E-mail: hpiwnica@cellbio.wustl.edu

standing of mitotic control requires elucidation of the mechanisms that regulate the interactions between Cdc2 and Cdc25C throughout the cell cycle. Furthermore, although tremendous progress has been made in recent years in identifying proteins that participate in checkpoint control, it is unclear how these proteins interface with core cell cycle regulators to inhibit cell cycle transitions (1).

The Ser²¹⁶ residue is the primary site of phosphorylation of Cdc25C in asynchronously growing cells (2). To determine if phosphorylation of Ser²¹⁶ regulates Cdc25C function, we generated HeLa cell lines that allow conditional expression of either wild-type Cdc25C or a mutant of Cdc25C containing alanine at position 216 (S216A). In these cells, expression of Cdc25C and Cdc25(S216A) is under the control of a

C.-Y. Peng, Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA, and Committee on Virology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.

P. R. Graves, Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.

hybrid protein consisting of a bacterial tetracycline repressor and VP16 activator protein (3). Expression can be induced upon removal of tetracycline from the medium (Fig. 1A). Two electrophoretic forms were evident in the case of induced Cdc25C, a major form (species b) and a minor form (species a). A single electrophoretic form migrating in the position of species a was evident for induced Cdc25(S216A). Phosphatase treatment converted the electrophoretic mobility of species b to that of species a, demonstrating that phosphorylation of Ser²¹⁶ is responsible for the shift in mobility of species b (4). The electrophoretic mobility of Cdc25C in SDS gels could therefore be used to monitor amounts of Ser²¹⁶ phosphorylation in vivo. Phosphopeptide mapping experiments (5) revealed one major and several minor phosphopeptides for induced Cdc25C (Fig. 1B). The major phosphopeptide contains Ser²¹⁶ (2) and was absent in maps of induced Cdc25(S216A).

To determine whether phosphorylation of Cdc25C at Ser²¹⁶ was regulated by the cell cycle, we elutriated Jurkat cells and analyzed fractions for endogenous Cdc25C mobility by immunoblotting (6). Most Jurkat cell Cdc25C was phosphorylated on Ser²¹⁶ in asynchronously growing cells and throughout the G₁ and S phases of the cell cycle (Fig. 2A). The G₂-M population of Jurkat cells contained Cdc25C phosphorylated on Ser²¹⁶ but also contained the mi-

totic form of Cdc25C. We used a doublethymidine block and release protocol to monitor Ser²¹⁶ phosphorylation in synchronized populations of HeLa cells (7). Amounts of Cdc25C phosphorylated at Ser²¹⁶ remained constant throughout the first 9 hours after release, corresponding to passage through the S and G_2 phases of the cell cycle (Fig. 2B). Mitotic cells collected between 10 and 12 hours after release were enriched in the mitotic form of Cdc25C and had lower amounts of the Ser²¹⁶-phosphorylated form of Cdc25C. Phosphopeptide maps of Cdc25C and Cdc25(S216A) were generated from induced HeLa cells incubated with ³²P during mitosis (Fig. 2C) (5). Cdc25C and Cdc25(S216A) yielded

Fig. 2. Cell cycle regulation of Ser²¹⁶ phosphorylation. (A) Asynchronous and elutriated populations of Jurkat cells were lysed, resolved by SDS-PAGE, and immunoblotted for Cdc25C. Lane 1, asynchronous population of Jurkat cells;

identical phosphotryptic maps, and the

Ser²¹⁶-containing phosphopeptide was not

detected (this peptide migrates between

phosphopeptides 7 and 8). Thus, Cdc25C is phosphorylated on Ser²¹⁶ throughout inter-

We used chromosome spreading to assess the role of Ser²¹⁶ phosphorylation in regu-

lating mitotic entry (8, 9). Normal mitotic

cells display intact chromosomes upon spreading, whereas chromosomes from cells

that enter mitosis from S phase fragment

upon spreading. Less than 0.1% of the mi-

totic nuclei derived from cells induced to

express Cdc25C showed abnormal chromo-

some spreads, whereas $4.4 \pm 0.7\%$ of the

mitotic nuclei derived from cells induced to

phase but not during mitosis.

lanes 2, 3, and 4, Jurkat cells enriched in G₁, S, or G₂-M, respectively. Species b is Cdc25C phosphorylated on Ser²¹⁶ and species c is the mitotic form of Cdc25C. (**B**) HeLa cells were synchronized at G₁-S by a double-thymidine block (time 0, lane 1) and then allowed to proceed through S (4 hours, lane 2), G₂ (8 and 9 hours, lanes 3 and 4), and into mitosis. Mitotic cells were collected by shake-off between 10 and 12 hours after release (lane 5). Synchronized cells were lysed, resolved by SDS-PAGE, and immunoblotted for Cdc25C. (**C**) Induced cells were arrested in mitosis with nocodazole and incubated with ³²P-labeled inorganic phosphate. Mitotic forms of Cdc25C (left panel) and Cdc25(S216A) (right panel) were isolated by immunoprecipitation and subjected to two-dimensional tryptic phosphopeptide mapping. Arrows depict the origin.

Table 1. Effects of Cdc25(S216A) overexpression on mitotic and replication checkpoint control. Uninduced cells or cells induced to express either Cdc25C or Cdc25(S216A) were incubated for 8 hours in the presence of nocodazole (for examination of mitotic control) or were incubated for 8 hours in the presence of hydroxyurea followed by an additional 8 hours in the presence of hydroxyurea and nocodazole (for examination of replication checkpoint control). Cells were processed for chromosome spreading as described (β). Mitotic nuclei were identified from a population of 2000 nuclei each in three independent experiments. Data are presented as mean \pm SEM.

Cells	Total mitotic nuclei (out of 2000 nuclei)	Percent mitotic nuclei	Normal mitotic nuclei	Abnormal mitotic nuclei
		Mitotic control		
Uninduced				
Cdc25C	594 ± 7	29.7% ± 0.4	594 ± 7	0 ± 0
Cdc25(S216A)	584 ± 8	29.2% ± 0.4	584 ± 8	0 ± 0
Induced				
Cdc25C	593 ± 5	29.6% ± 0.3	592 ± 5	$0.3 \pm 0.3 (0.06\% \pm 0.06)^{\dagger}$
Cdc25(S216A)	617 ± 2 ⁻	30.8% ± 0.1	589 ± 5	$27.0 \pm 4.0 (4.4\% \pm 0.7)^{\dagger}$
	DNA rep	lication checkpoir	nt control	
Uninduced		·····		
Cdc25C	11.0 ± 1.0	0.5% ± 0.07	11.0 ± 1	0 ± 0
Cdc25(S216A)	10.3 ± 0.9	0.5% ± 0.04	10.3 ± 0.9	0 ± 0
Induced				
Cdc25C	15.3 ± 1.8	0.8% ± 0.09	10.0 ± 1.5	5.3 ± 1.8
Cdc25(S216A)	76.0 ± 12	$3.8\% \pm 0.60*$	10.7 ± 0.9	65 ± 11

*The percent of Cdc25(S216A) mitotic nuclei are significantly increased compared with Cdc25C (P < 0.01, Student's *t* test). †Percent of abnormal mitotic nuclei. The percent of Cdc25(S216A) abnormal mitotic nuclei are significantly increased compared with Cdc25C (P < 0.005, Student's *t* test). The fact that only 4.38% of the Cdc25(S216A) mitotic nuclei displayed abnormal chromosomes indicates that Ser²¹⁶ phosphorylation of Cdc25C is only one mechanism regulating entry into mitosis (*28*).

REPORTS

express Cdc25(S216A) showed abnormalities (Table 1).

Cells induced to express Cdc25C and Cdc25(S216A) were also analyzed for DNA replication and DNA damage checkpoint responses (9). A DNA replication checkpoint response was induced by incubation of the cells in the presence of hydroxyurea. Most cells induced to express Cdc25C were arrested in S phase as indicated by the low numbers of mitotic nuclei (Table 1). In contrast, five times more mitotic nuclei were counted in cells induced to express Cdc25(S216A) (Table 1). Although the number of normal nuclei were similar for uninduced and induced cells, cells induced to express Cdc25(S216A) had significantly more abnormal nuclei (Table 1). In addition, Cdc25(S216A) cells had detectable amounts of the mitotic form of Cdc25C and larger amounts of cyclin B1-associated histone H1 kinase activity (4). Finally, to generate a DNA damage checkpoint response, cells were gamma irradiated and monitored for their ability to delay in G_2 (9). In the absence of irradiation, the S phase cells from uninduced and Cdc25(\$216A)-induced populations took between 8 and 12 hours to reach G₁ (Fig. 3, A and B). At 24 hours after irradiation, only 9% of the S phase cells from uninduced populations had cycled to G_1 , indicating a 12- to 16-hour radiation-induced delay (Fig. 3C). Induced expression of Cdc25C resulted in a partial

Fig. 3. Disruption of DNA damage checkpoint in Cdc25(S216A) cells. Uninduced cells or cells induced to express Cdc25C or Cdc25(S216A) were labeled with BrdU and then treated with 0 or 6 Gy of gamma irradiation. Cells were harvested at the indicated times and stained with PI and for BrdU as described (9). DNA content profiles for BrdU-positive cells are shown for uninduced and Cdc25(S216A) induced cells in (A) to (D). Total DNA content profiles and quantitation of G_1 , S, and G_2 -M irradiated cells are shown in (E) to (H).

Fig. 4. Association of Cdc25C with 14-3-3 in a phosphorylation- and cell cycle-dependent manner. (A) Cells induced to express Cdc25C and Cdc25(S216A) were untreated (lanes 1 and 3) or were incubated in the presence of nocodazole (lane 2). Immunoprecipitates were prepared from 3 mg of total cellular protein by using 9E10 Mycagarose and analyzed for Cdc25C (upper panel) and 14-3-3 (lower panel) by immunoblotting. AS, asynchronous cells; M, mitotic cells. (B) Cells induced to express Cdc25C were synchronized at G₁-S by a double-thymidine block (time 0, lane 1) and then allowed to proceed through S (4 hours, lane 2), G₂ (9 hours, lane 3), M (10 to 12 hours, lane 4), and G1 (13 hours, lane 5). Cells were harvested at the indicated times, and immunoprecipitates of Cdc25C were prepared from 2 mg of total cellular protein. Cdc25C (upper panel) and 14-3-3 (lower panel) were visualized by immunoblotting. (C) Coprecipitates of GST-Cdc25C and

14-3-3 from overproducing insect cells were incubated in vehicle (lanes 1 and 2) or vehicle containing unphosphorylated (lanes 3 and 4) or Ser^{216} -phosphorylated (lanes 5 and 6) peptide at concentrations of 10 and 100 μ M. Reactions were resolved by SDS-PAGE and immunoblotted for Cdc25C and 14-3-3.

loss in the G_2 delay, which was exaggerated in the case of Cdc25(S216A) expression (Fig. 3, D, G, and H). By 12 hours, 9% of the Cdc25(S216A)-expressing cells were already in G_1 and 16% were in G_1 by 16 hours. After 24 hours, the G_1 -S fractions represented 60% of the population. Cycling and arrest of BrdU-positive cells demonstrated that the observed results are due to a G_2 delay rather than to cells not releasing from G_1 (Fig. 3, A, B, C, and D).

The sequence bordering and inclusive of Ser²¹⁶ in Cdc25C (RSPS²¹⁶MP) contains a potential recognition motif for binding of 14-3-3 proteins: RSXSXP where P is proline, R is arginine, X is any amino acid, and the underlined serine is phosphorylated (10). The 14-3-3 proteins belong to a highly conserved multigene family of small acidic proteins that associate with cell cycle and cell death regulators, oncogenes, and signaling molecules (11, 12). There are at least seven mammalian 14-3-3 isoforms ranging in size from 30 to 35 kD. Immunoblotting experiments were performed with a 14-3-3 antibody that recognizes several of the mammalian isoforms to determine whether a complex between Cdc25C and 14-3-3 proteins could be detected. We detected 14-3-3 proteins in immunoprecipitates of Cdc25C but not Cdc25(S216A) (Fig. 4A). Given that the mitotic form of Cdc25C was not detectably phosphorylated on Ser²¹⁶ (Fig. 2C), we determined whether the binding of Cdc25C to 14-3-3 was lost during mitosis. HeLa cells induced to express Cdc25C were arrested in mitosis with nocodazole (3), and Cdc25C immunoprecipitates were monitored for the presence of 14-3-3 by immunoblotting. No 14-3-3 was immunoprecipitated with the mitotic form of Cdc25C (Fig. 4A). We used a doublethymidine block and release protocol to monitor 14-3-3 binding at other phases of the cell cycle (6). Binding of 14-3-3 was detected during the G₁, S, and G₂ phases of the cell cycle (Fig. 4B). Binding of 14-3-3 was reduced in fractions enriched for M phase cells.

Mutation of Ser^{216} abrogated the binding of 14-3-3 to Cdc25C, demonstrating that Ser^{216} is essential for the interaction. To determine whether phosphorylation of Ser^{216} was important for the interaction, we performed competition experiments using peptides consisting of amino acids 210 to 225 of Cdc25C that were either phosphorylated on Ser^{216} or unphosphorylated (13). Complexes consisting of 14-3-3 and Cdc25C-GST fusion protein purified from insect cells were disrupted by incubation with excess peptide containing phosphorylated Ser^{216} but not by unphosphorylated peptide (Fig. 4C). These results demonstrate that the phosphorylation of Ser^{216} is

sion protein consisting of amino acids 200 to 256 of Cdc25C (lane 3). Reactions were separated into pelleted (lane 1) and supernatant (lane 2) fractions by centrifugation or were analyzed directly (lane 3). Proteins were resolved on a 7% gel and visualized by autoradiography. (**B**) Amino acids inclusive of and surrounding Ser²¹⁶ showing NH₂-terminal trypsin and proline endopeptidase cleavage sites. (**C**) Radio-labeled His₆-Cdc25C was digested with trypsin, and the tryptic peptides were resolved by reverse-phase HPLC. Column fractions were collected and monitored for the presence of radioactivity. (**D**) Manual Edman degradation of tryptic phosphopeptide present in fraction 57 (right panel). The dotted lines indicate radioactivity remaining bound to the sequencing membrane at the end of each cycle, and bars represent radioactivity released from the membrane.

required for 14-3-3 binding to Cdc25C.

Mitotic hyperphosphorylation of Cdc25C on NH2-terminal serine and threonine residues increases its intrinsic phosphatase activity (1). In contrast, phosphorylation of Cdc25C on Ser²¹⁶ throughout interphase appears to negatively regulate Cdc25C. Our results suggest that the neg-ative effects of Ser^{216} phosphorylation may be mediated by 14-3-3 binding. We have demonstrated that 14-3-3 is bound to Cdc25C during phases of the cell cycle when Cdc25C is phosphorylated on Ser²¹⁶ and functionally inactive and is released in mitosis when Cdc25C is maximally active and not phosphorylated on Ser²¹⁶. We propose that Ser^{216} phosphorylation and 14-3-3 binding sequester Cdc25C from functionally interacting with Cdc2 in vivo, because the phosphatase activity of Cdc25C was not detectably altered in response to either Ser²¹⁶ phosphorylation or 14-3-3 binding (14).

The fission yeast homologs of 14-3-3, Rad24 and Rad25, have been shown to play a role in mitotic and radiation checkpoint control (15, 16). Loss of either gene causes early entry into mitosis and partial loss of the radiation checkpoint, similar to the phenotype reported here for cells expressing the Cdc25C mutant (S216A). An inability to inhibit fission yeast Cdc25 activity could account for the observed $rad24^+$ and $rad25^+$ mutant phenotypes. The Chk1 protein kinase is another essential component of the DNA damage checkpoint in fission yeast (17–19). Cells that lack $chk1^+$ are viable but fail to delay mitotic entry in response to damaged DNA and subsequently die. We tested whether Chk1 from Schizosaccharomyces pombe could phosphorylate Cdc25C in vitro (20). Chk1 phosphorylated both fulllength Cdc25C and a GST fusion protein consisting of amino acids 200 to 256 of Cdc25C (Fig. 5A). Phosphoamino acid analysis revealed phosphoserine (21), and trypsin digestion of Cdc25C followed by high-pressure liquid chromatography (HPLC) analysis gave rise to a single phosphopeptide that eluted in fraction 57 (Fig. 5C). Sequencing of this tryptic phosphopeptide before and after digestion with proline-specific endopeptidase identified Ser²¹⁶ as the site of phosphorylation. Human Chk1 also phosphorylated Cdc25C on Ser²¹⁶, demonstrating the conservation of this regulatory pathway (22). The ability of both fission yeast and human Chk1 to phosphorylate Cdc25C on Ser²¹⁶ implicates Chk1 as possibly regulating the interactions between 14-3-3 and Cdc25C during a DNA damage checkpoint response.

REFERENCES AND NOTES

- 1. D. J. Lew and S. Kombluth, Curr. Opin. Cell Biol. 8, 795 (1996).
- S. Ogg, B. Gabrielli, H. Piwnica-Worms, J. Biol. Chem. 269, 30461 (1994).
- 3. Myc-epitope-tagged Cdc25C and Cdc25(S216A) were subcloned into pUHD10-3 (25). Plasmids were cotransfected with pBabe, a plasmid encoding a puromycin resistance gene, into the HeLa tTA cell line (23). Clones resistant to G418 (geneticin, Gibco) and puromycin were screened for inducible expression of Myc-tagged Cdc25C or Cdc25(S216A). Clones were expanded in Dulbecco's minimum essential medium (DMEM) containing G418 (400 µg/m), pu-

romycin (1 µg/ml), and tetracycline (2 µg/ml). Cells were trypsinized and washed four times with warm DMEM lacking tetracycline to induce protein expression. Upon replating, cells were grown in DMEM containing G418 and puromycin. Indirect immunofluorescence indicated that 85 to 90% of cells were induced to express Cdc25C and Cdc25(S216A) at levels 10- to 50-fold as high as endogenous Cdc25C (4). In some cases, cells were subjected to a doublethymidine block (7) or were incubated during the last 8 to 16 hours of induction with nocodazole (0.15 µg/ml) (Calbiochem) followed by mechanical agitation. Cells were lysed in mammalian cell lysis buffer [50 mM tris (pH 8.0), 2 mM dithiothreitol (DTT), 5 mM EDTA, 0.5% NP-40, 100 mM NaCl, 1 µM microcystin. 1 mM sodium orthovanadate. 2 mM phenvlmethylsulfonyl fluoride (PMSF), aprotinin (0.15 U/ml), 20 μM leupeptin, and 20 μM pepstatin]. Antibodies used for Cdc25C detection included a monoclonal antibody to the Myc epitope (9E10 myc-agarose, Santa Cruz Biotechnology), a monoclonal antibody generated to Cdc25C (174E10-3), and an affinitypurified rabbit polyclonal antibody to glutathione-S transferase (GST), 14-3-3 proteins were detected with antibody to 14-3-3 ß (K-19, Santa Cruz), which is broadly reactive with members of the 14-3-3 family of proteins. Bound primary antibodies were detected with horseradish peroxidase-conjugated anti-rabbit or anti-mouse secondary antibodies (Cappel) and an ECL detection system (Amersham).

- C.-Y. Peng and H. Piwnica-Worms, unpublished results.
- 5. Cells were incubated for 4 hours in phosphate-free media supplemented with ³²P-labeled inorganic phosphate (4 mCi/ml), 2 mM glutamine, and 1.5% dialyzed calf serum. Cells were lysed in 1 ml of mammalian cell lysis buffer, and Cdc25C was immunoprecipitated with antibody 174E10-3. Proteins were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), transferred to nitrocellulose, and visualized by autoradiography. The nitrocellulose containing radiolabeled protein was excised. blocked with 0.5% polyvinylpyrrolidone (PVP-40) in 100 mM acetic acid for 30 min at 37°C, washed six times with water, and digested with TPCK trypsin (Worthington) at a final concentration of 30 mg/ml in 0.1 M NH₄HCO₃ (pH 8.0). Proteolysis and two-dimensional phosphopeptide mapping were performed as described (24).
- Jurkat cells (1 × 10⁹) were suspended in 5 ml of cell dissociation solution (Sigma Chemical) and elutriated at 25°C with a Beckman elutriator rotor (model J2-MI) in RPMI medium containing 1% fetal bovine serum. Cells were processed for flow cytometric analysis as described (25) with a Becton-Dickinson FAC-Scan, and data were analyzed with CELL QUEST software.
- S. Atherton-Fessler et al., Mol. Biol. Cell. 5, 989 (1994).
- R. Heald, M. McLoughlin, F. McKeon, *Cell* 74, 463 (1993).
- 9. Uninduced and induced cells were incubated for 8 hours in the presence of nocodazole (0.15 µg/ml) and then processed for chromosome spreading as described (8). For monitoring the DNA replication checkpoint, we incubated cells in the presence of 1 mM hydroxyurea (Sigma Chemical). After 8 hours, nocodazole was added to a final concentration of 0.15 µg/ml. After an additional 8 hours, cells were collected and analyzed for amounts of Cdc25C by immunoblotting, for cyclin B1-associated histone H1 kinase activity as described (7), and for chromosome integrity as described (8). For monitoring the DNA damage checkpoint, we labeled cells for 60 min with 20 µM bromodeoxyuridine (BrdU. Amersham) and then treated them with 0 or 6 Gy of gamma irradiation. Cells were harvested at 0, 4, 8, 12, 16, and 24 hours after irradiation, stained with propidium iodide (PI), stained with fluorescein isothiocyanate (FITC)conjugated monoclonal antibodies to BrdU, and processed for flow cytometric analysis as described (26), Because induction of the Cdc25(S216A) mutant protein occurred more quickly than for wild-type Cdc25C, inductions of Cdc25C were initiated at least 16 hours before Cdc25(S216A) inductions. In

every experiment, lysates were prepared and monitored for amounts of Cdc25C and Cdc25(S216A) by immunoblotting, and in each case the Cdc25 (S216A) mutant accumulated to slightly smaller amounts than did wild-type Cdc25C.

- A. J. Muslin, J. W. Tanner, P. M. Allen, A. S. Shaw, *Cell* 84, 889 (1996).
- 11. A. Aitlen, Trends Cell Biol. 6, 341 (1996).
- J. Zha, H. Harada, E. Yang, J. Jockel, S. J. Korsmeyer, Cell 87, 619 (1996).
- 13. Stocks (1 mM) of phosphorylated (GLYRSPpSMPENL-NRPR) (E, Glu; G, Gly; L, Leu; M, Met; N, Asn; Y, Tyr) and unphosphorylated peptides consisting of amino acids 210 to 225 of Cdc25C were prepared in 50 mM sodium phosphate, pH 7.0, and 0.5% sodium azide (vehicle). Lysates of Sf9 insect cells overproducing GST-Cdc25C were incubated with glutathione agarose beads. Beads containing Cdc25C:14-3-3 complexes were washed three times with buffer A [1× phosphatebuffered saline, 1% NP-40, 50 mM NaF, 5 mM EDTA, 2 mM DTT, 1 µM microcystin, 2 mM PMSF, 20 µM leupeptin, 20 µM pepstatin, and aprotinin (0,15 U/ml)], and peptides were added at the indicated concentrations in a final volume of 200 μl of buffer A. Incubations were carried out at 4°C for 1 hour followed by three washes with buffer A. Reactions were resolved by SDS-PAGE and GST-Cdc25C and 14-3-3 were visualized by immunoblotting with GST and K-19 antibodies, respectively
- 14. P. R. Graves and H. Piwnica-Worms, unpublished results.
- 15. F. Al-Khodairy and A. M. Carr, *EMBO J.* **11**, 1343 (1992).
- 16. J. C. Ford et al., Science 265, 533 (1994).
- 17. N. C. Walworth and R. Bernards, *ibid.* **271**, 353 (1996).
- N. Walworth, S. Davey, D. Beach, *Nature* **363**, 368 (1993).
- 19. F. Al-Khodairy et al., Mol. Biol. Cell 5, 147 (1994).
- 20. A recombinant baculovirus encoding GST fused to S. pombe Chk1 was generated by inserting the fission yeast chk1 gene into pGEX2TN followed by cloning of GST-chk1 into pFASTBAC1. Virus was generated as described by the manufacturer (Gibco-BRL). Recombinant GST-Chk1 kinase was isolated from infected Sf9 insect cells on glutathione (GSH) agarose. Cdc25C was cloned into pET15b (Novagen) and purified as a soluble hexahistidine (His₆) fusion protein as outlined by the manufacturer. GST fused to amino acids 200 to 256 of Cdc25C [GST-Cdc25C(200-256)] was isolated as described (2). Kinase reactions contained GST-Chk1 bound to GSH agarose and either Hise-Cdc25C or GST-Cdc25C(200-256) in a buffer consisting of 50 mM tris (pH 7.4), 10 mM MgCl₂, 10 μ M adenosine triphos-phate (ATP), 1 mM DTT, and 10 μ Ci of [γ -³²P]ATP. Reactions were analyzed directly or were first centrifuged to isolate supernatant and pelleted fractions. Radiolabeled proteins were separated by SDS-PAGE. transferred to nitrocellulose membranes, and visualized by autoradiography. The nitrocellulose membrane containing radiolabeled His_6 -Cdc25C was excised and treated as described (5). Further digestion on selected HPLC fractions was performed with 2 units of prolinespecific endopeptidase (ICN) in 0.1 M sodium phosphate, 5 mM EDTA (pH 7.4) at 37°C for 16 hours. Reactions were acidified in 1% trifluoroacetic acid (TFA) and loaded onto a Vydac C18 column (25 cm by 0.46 cm inner diameter). Reverse-phase HPLC was performed at 37°C. Reactions were loaded in 0.1% TFA (buffer A) and eluted with a gradient from 0 to 60% buffer B (90% acetonitrile, 0.095% TFA). Fractions were collected at 0.5-min intervals up to 90 min and counted for radioactivity. Selected fractions were immobilized on Sequenion-AA membrane discs (Millipore) for NH2-terminal sequencing. Manual Edman degradation was performed as described (27) with a coupling and cleav age temperature of 55°C
- 21. R. S. Thoma and H. Piwnica-Worms, unpublished results.
- 22. Y. Sanchez et al., Science 277, 1497 (1997).
- M. Gossen and H. Bujard, Proc. Natl. Acad. Sci. U.S.A. 89, 5547 (1992).
- M. Xu, K.-A. Sheppard, C.-Y. Peng, A. S. Yee, H. Piwnica-Worms, *Mol. Cell. Biol.* 14, 8420 (1994).

- 25. S. van den Heuvel and E. Harlow, *Science* **262**, 2050 (1993).
- T. Kawabe, A. J. Muslin, S. J. Korsmeyer, *Nature* 385, 454 (1997).
- J. E. Bodwell *et al.*, *J. Biol. Chem.* **266**, 7549 (1991);
 S. Sullivan and T. W. Wong, *Anal. Biochem.* **197**, 65 (1991).
- J. Pines and T. Hunter, J. Cell. Biol. 115, 1 (1991);
 K. P. Lu and T. Hunter, Cell 81, 413 (1995).
- 29. We thank M. J. Byrnes for technical support, the

laboratory of S. Dowdy for assistance with fluorescence-activated cell sorting analysis, T. Carr and T. Enoch for S. pombe Chk1 reagents, and T. Enoch for insightful discussions. Supported in part by NIH grants GM47017 (to H.P.-W.) and Al34094 (to A.S.S.) and training grant GM18428 (to P.R.G.). H.P.-W. is an Associate Investigator of the Howard Hughes Medical Institute.

2 May 1997; accepted 25 July 1997

A Cyanobacterial Phytochrome Two-Component Light Sensory System

Kuo-Chen Yeh, Shu-Hsing Wu, John T. Murphy, J. Clark Lagarias*

The biliprotein phytochrome regulates plant growth and developmental responses to the ambient light environment through an unknown mechanism. Biochemical analyses demonstrate that phytochrome is an ancient molecule that evolved from a more compact light sensor in cyanobacteria. The cyanobacterial phytochrome Cph1 is a light-regulated histidine kinase that mediates red, far-red reversible phosphorylation of a small response regulator, Rcp1 (response regulator for cyanobacterial phytochrome), encoded by the adjacent gene, thus implicating protein phosphorylation-dephosphorylation in the initial step of light signal transduction by phytochrome.

The ability to cope with a continuously changing light environment is essential to the survival of all organisms that rely on sunlight for energy. Photosynthetic organisms, from bacteria to higher plants, possess numerous light-sensing molecules for perception and adaptation to fluctuations of intensity, direction, duration, polarization, and spectral quality of light (1). Most well known of these photoreceptors are the phytochromes, which sense ambient light conditions by their ability to photointerconvert between red (Pr) and far-red (Pfr) light-absorbing forms (2). The hypothesis that phytochrome is a light-regulated enzyme was proposed nearly 40 years ago (3). Despite evidence that purified plant phytochromes exhibit protein kinase activity (4) and possess a COOH-terminal domain similar to that of bacterial histidine kinases (5), the enzyme hypothesis remains controversial.

Identification of the *rcaE* gene from the cyanobacterium *Fremyella diplosiphon*, which encodes a protein that is structurally related to higher plant phytochromes and bacterial histidine kinases, has renewed interest in the possibility that phytochrome is a protein kinase (6). Other phytochromelike open reading frames (ORFs) have been noted in the cyanobacterium *Synechocystis* sp. PCC6803 genome (6, 7). One of these ORFs, locus slr0473, encodes a 748-residue polypeptide whose expression in Escherichia coli and incubation with phycocyanobilin (PCB), yielded an adduct with a red, far-red photoreversible phytochrome signature (8). Closer inspection of this phytochrome locus, which we have named cph1 for cyanobacterial phytochrome 1, reveals another ORF only 10 base pairs (bp) downstream, locus slr0474, which we have named rcp1 for response regulator for Cph1 based on this study (Fig. 1A). Because the COOHterminal domain of Cph1 contains all conserved features of histidine kinase transmitter modules (Fig. 1B) and rcp1 encodes a 147-amino acid protein related to the CheY superfamily of bacterial response regulators (Fig. 1C), which contain aspartate kinase receiver modules, we investigated whether these proteins represent a functional light-regulated transmitter-receiver pair (9).

Affinity-tagged versions of both proteins were cloned by polymerase chain reaction (PCR) and expressed in *E. coli* (10). That Cph1 is a functional phytochrome homolog was demonstrated by its ability to catalyze its own chromophore attachment to yield photoreversible adducts with the higher plant chromophore precursor phytochromobilin (PΦB) and its phycobilin analog PCB (Fig. 2A). Assembly with phycoerythrobilin (PEB), a phycobilin analog that lacks the C¹⁵ double bond found in PCB and PΦB, also produced a covalent adduct as visualized by zinc-blot analysis (Fig. 2B). The PEB adduct of Cph1 was photochem-

Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.

^{*}To whom correspondence should be addressed. E-mail: jclagarias@ucdavis.edu.