Chk1 fusion protein or unfused GST were
analyzed by glutathione (GSH)-Sepharose
precipitation followed by immunoblot-
ting. GST-Chk1 precipitated with Cdc25,
whereas no Cdc25 was detected in associ-
ation with GST (Fig. 3A). Incubation of
GST-Chkl with associated Cdc25 in the
presence of [y->2Pladenosine triphosphate
(ATP) resulted in phosphorylation of
Cdc25 (Fig. 3B), suggesting that Cdc25
may be a direct substrate of Chkl kinase.
Chkl protein purified from an insect cell
expression system phosphorylated Cdc25
in vitro (21).

Activation of the DNA damage check-
point requires Rad3, a kinase related to the
ATM protein that is defective in ataxia
telangiectasia patients (3). DNA damage
leads to increased phosphorylation of Chkl
by a Rad3-dependent process, suggesting
that Chkl may be activated by phospho-
rylation (5). Our studies identify Cdc25 as
a key, possibly direct, target of Chkl. In
addition, these findings exclude Weel as
an important Chkl substrate. Therefore,
we propose that Rad3-dependent activa-
tion of Chkl leads to negative regulation
of Cdc25 (Fig. 4). This negative regula-
tion may occur by direct inhibition of
Cdc25 activity, prevention of the activa-
tion of Cdc25 that occurs at the G,-M
transition, or interference in the interac-
tion between Cdc25 and Cdc2. Inhibitory
phosphorylation of Cde2 is crucial for G,
DNA damage arrest in mammalian cells
(22, 23). In these cells it is not known
whether this arrest is brought about by
inhibition of Cdc2 dephosphorylation, nor
is it known if mammals have a Chkl
homolog. However, in view of the striking
degree of homology of mitotic control
mechanisms in fission yeast and mammals,
we expect that the S. pombe checkpoint
control will serve as a useful paradigm for
investigating the DNA damage checkpoint
mechanism in more complex organisms.

Rad3

Chk1

Cdc25
Cdoo “@———Cdc2(Tyr'5-PO,)

Active  wee1-Mik1 Inhibited

Fig. 4. Model of the DNA damage checkpoint
mechanism in fission yeast. Rad3 and Chk1 ki-
nases are required for the checkpoint. Chk1 un-
dergoes a Rad3-dependent phosphorylation in ir-
radiated cells, and Chk1 overexpression induces
cell cycle arrest by a Rad3-independent mecha-
nism (20), indicating that Chk1 activation is regu-
lated by Rad3, perhaps by direct phosphorylation.
Chk1 inhibits Cdc25 and thereby prevents Cdc2
Tyr'® dephosphorylation.
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Conservation of the Chk1 Checkpoint Pathway
in Mammals: Linkage of DNA Damage to Cdk
Regulation Through Cdc25
Yolanda Sanchez, Calvin Wong, Richard S. Thoma,

Ron Richman, Zhigi Wu, Helen Piwnica-Worms,
Stephen J. Elledge*

In response to DNA damage, mammalian cells prevent cell cycle progression through the
control of critical cell cycle regulators. A human gene was identified that encodes the
protein Chk1, a homolog of the Schizosaccharomyces pombe Chk1 protein kinase, which
is required for the DNA damage checkpoint. Human Chk1 protein was modified in
response to DNA damage. In vitro Chk1 bound to and phosphorylated the dual-spec-
ificity protein phosphatases Cdc25A, Cdc25B, and Cdc25C, which control cell cycle
transitions by dephosphorylating cyclin-dependent kinases. Chk1 phosphorylates
Cdc25C on serine-216. As shown in an accompanying paper by Peng et al. in this issue,
serine-216 phosphorylation creates a binding site for 14-3-3 protein and inhibits function
ofthe phosphatase. These results suggest a model whereby in response to DNA damage,
Chk1 phosphorylates and inhibits Cdc25C, thus preventing activation of the Cdc2-cyclin

B complex and mitotic entry.

Cell cycle checkpoints are regulatory path-
ways that control the order and timing of
cell cycle transitions and ensure that criti-

cal events such as DNA replication and
chromosome segregation are completed
with high fidelity. In response to DNA
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Fig. 1. Isolation of the human and mouse CHK1 genes. (A) Domain structure of the predicted human
Chk1 (hChk1) protein. The black boxes indicate regions of highest conservation. The GenBank
accession number for hChk1 is AF016582, and for mChk1, AF016583. (B) Alignment of Chk1
homologs. Amino acid identities are shown as black boxes. Conservative changes are shown as
shaded boxes. Hs is Homo sapiens, Sp is S. pombe, Ce is C. elegans, and Dm is D. melanogaster.
The database DNA sequence for ceChk1 has a likely frame shift in the COOH-terminus. Single-
letter abbreviations for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe;
G, Gly; H, His; |, lle; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gin; R, Arg; S, Ser; T, Thr; V, Val; W,

Trp; and Y, Tyr.

damage, cells activate a checkpoint path-
way that arrests the cell cycle to provide
time for repair and induces the transcrip-
tion of genes that facilitate repair. In yeast,
this checkpoint pathway consists of several
protein kinases including phosphoinositide
(PI)-kinase homologs hATM, scMecl, and
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spRad3 and protein kinases scDunl,
scRad53, and spChkl (1) (the prefixes h,
sc, and sp refer to Homo sapiens, Saccharo-
myces cerevisiae, and Schizosaccharomyces
pombe, respectively). In mammals, this
pathway results in the activation of p53,
which induces transcription of the cyclin-
dependent kinase inhibitor p21©™!, result-
ing in arrest in the G, phase of the cell
cycle (2).

To address the conservation of check-
point function we searched for human ho-
mologs of yeast checkpoint genes. We used
a degenerate polymerase chain reaction
(PCR) strategy and identified a human
gene very similar to the gene encoding
Chkl in S. pombe (Fig. 1) (3). With human
CHKI1 cDNA as a probe, we isolated the
gene encoding Chk1 from mouse (mChk1).

B Human Mouse
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Fig. 2. Localization of CHK7 on chromosome
11qg24. (A) In situ hybridization was performed on
mitotic chromosomes with fluorescently labeled
human CHK1 DNA. Arrows indicate CHK1 local-
ization at 11g24. (B) Northern analysis of human
and mouse Chk1. Blots containing the polyade-
nylated RNA (2 pg per lane) from the indicated
tissues were probed with human or mouse CHK1
cDNAs.

The sequence of the longest human cDNA
(1891 base pairs) predicted a translation
product of 476 amino acids with a molecu-
lar size of 54 kD (Fig. 1A). No in-frame stop
codon was found upstream of the first me-
thionine, which is within the Kozak con-
sensus sequence (4) and is likely to be the
initiation codon because its encoded pro-
tein is the same size as that observed in cells
(see below). The human CHKI gene is
related to a Caenorhabditis elegans gene in
the database and a Drosophila melanogaster
gene grp, which has a role in cell cycle
control and development (5) (Fig. 1B). The
predicted hChkl1 protein is 29% identical
and 44% similar to spChk1, 40% identical
and 56% similar to the ceChkl (ce referes
to C. elegans), and 44% identical and 56%
similar to dmChk1l (dm refers to D. mela-
nogaster). Sequence analysis revealed sever-
al COOH-terminal domains that are highly
conserved in the Chkl family of kinases
(Fig. 1B).

The chromosomal location of CHKI
was mapped to 11q24 by fluorescence in
situ hybridization (Fig. 2A). This is adja-
cent to the gene encoding ATM at 11q23.
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Loss of heterozygosity at this region has
been associated with a number of cancers
including those of the breast, lung, and
ovaries (6). Northern (RNA) blot analysis
revealed ubiquitous expression of hChkl,
with large amounts in human thymus, tes-
tis, small intestine, and colon (Fig. 2B). In
adult mice, mChk1 was detected in all tis-
sues examined and.in large amounts in the
testis, spleen, and lung (Fig. 2B). Mouse
embryos from embryonic day 15.5 also re-
vealed ubiquitous expression, with large
amounts detected in the brain, liver, kid-
ney, pancreas, intestines, thymus, and lung
(7). Testis, spleen, and thymus also express
large amounts of ATM (8).

Affinity-purified antibodies to hChkl
protein made in baculovirus (anti-FL) (9)
or to its COOH-terminal 15 amino acids
(anti-PEP) recognized a 54-kD protein (Fig.
3A) that comigrates with hChk1 expressed
in baculovirus (7). The anti-PEP but not

“anti-FL signal was competed by addition of

excess peptide, indicating that the two sera
recognize different hChk1 epitopes, further
confirming identity of the 54-kD band as
endogenous hChkl. A 70-kD protein was
also specifically recognized by anti-PEP.
When mCHK1 was expressed from the cy-
tomegalovirus (CMV) promoter in baby
hamster kidney (BHK) cells, we detected a
54-kD nuclear protein only in transfected
cells using antibodies to the COOH-termi-
nal peptide of mChkl. This exogenous
mChkl comigrates with endogenous
mChk1 from mouse lung tissue (7).

To determine whether hChk1 is modified
in response to DNA damage like spChk1, we
examined hChkl1 protein in extracts from
cells treated with ionizing radiation. hChk1
from extracts from damaged cells showed a
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minor but reproducible reduction in mobility
compared with hChk1 from untreated cells
(Fig. 3B). The change in mobility observed
in response to DNA damage for spChk1 was
also slight (10). This modification was con-
firmed by two-dimensional gel analysis,
which demonstrated the generation of a
more negatively charged hChkl species 2
hours after gamma irradiation (Fig. 3B).
These results indicate that hChk1 may par-
ticipate in transduction of the DNA damage
signal like spChk1. Indirect immunofluores-
cence revealed that hChk1 is localized to the
nucleus in a punctate staining pattern (Fig.
3C), similar to that observed for ATM (8).
mChk1 expressed in BHK cells confirmed
the nuclear localization (7).

To test for the ability of hChkl1 to reg-
ulate the cell cycle, we transfected hChk1
or hChk1(D130A), a catalytically inactive
mutant, under the control of the CMV
promoter or the CMV vector alone into
HelLa cells treated with and without 6 Gy of

- ionizing radiation. We did not detect per-

turbation of the cell cycle by either kinase
relative to vector alone, suggesting that
overproduction alone was insufficient to
deregulate the system (7). :

Tyrosine phosphorylation of Cdc2 has
been implicated in cell cycle arrest in
response to DNA damage and replication
blocks in both S. pombe (11, 12) and
humans (13). In S. pombe, Cdc2 mutants
that cannot be phosphorylated on tyrosine
are unable to arrest the cell cycle in re-
sponse to blockade of DNA replication.
Although it was originally thought that
the DNA damage checkpoint did not op-
erate through tyrosine phosphorylation,
recent experiments have shown that ty-
rosine phosphorylation is required for S.

E) and (F), %150.

pombe cells to arrest in response to DNA
damage (12, 14). Although it is now clear
that tyrosine phosphorylation is required
for proper checkpoint control, the exper-
iments implicating tyrosine phosphoryl-
ation in this pathway do not distinguish
between a regulatory role in which ty-
rosine phosphorylation rates are manipu-
lated by the checkpoint pathways, or a
passive role in which tyrosine phosphoryl-
ation is required to allow cell cycle arrest
but is not the actual target of the check-
point pathway (1, 15).

To address this issue, we analyzed the
ability of hChk1 to phosphorylate key reg-
ulators of Cdk tyrosine phosphorylation,
the Cdc25 dual-specificity phosphatases
hCdc25A, hCdc25B, and hCdc25C.
These regulators were singled out for sev-
eral reasons. First, overproduction of
hCdk4 mutants in which the inhibitory
tyrosine is changed to phenylalanine ab-
rogates G, arrest in response to ultraviolet
(UV) light (16). Second, the UV sensitiv-
ity of chkl~ mutants in S. pombe is sup-
pressed by inactivating cdc25 with a tem-
peraturesensitive mutation (10). Finally,
in S. pombe weel mikl mutants, DNA
damage still causes a partial cell cycle
delay that could be due to regulation of
spCdc25 activity (12). GST-hChkl and
GST-hChk1(D130A) were introduced
into baculovirus, purified from baculovi-
rus-infected insect cells, and incubated
with GST-hCdc25A, GST-hCdc25B, and
GST-hCdc25C (9, 17). GST-hChk1 phos-
phorylated all three hCdc25 proteins but
not GST alone (Fig. 4A). Although GST- -
hCdc25C comigrated with GST-hChkl,
which autophosphorylates, increased phos-
phorylation was observed at that position
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relative to phosphorylation in the pres-
ence of kinase alone, and phosphorylation
of a GST-hCdc25C breakdown product
was visible. In separate experiments with a
His¢-tagged hChk1 derivative, there was
phosphorylation of GST-hCdc25C (Fig.
4B). A catalytically inactive mutant failed
to phosphorylate itself or any of the
hCdc25 proteins (Fig. 4A).

Protein kinases often form complexes
with their substrates. To see if this was the
case for hChkl' and the Cdc25 proteins,
GST-hCdc25 proteins on glutathione beads
were incubated together with baculo-
virus extracts expressing His,-tagged hChk1
and precipitated. GST-hCdc25A, GST-
hCdc25B, and GST-hCdc25C each specif-
ically bound hChk1 whereas GST alone did
not (Fig. 4C). Furthermore, two other GST
fusion proteins, GST-Dunl and GST-Skpl,
failed to bind hChk1l (18). These results
indicate that Cdc25 can form complexes
with hChkl1.

To establish the significance of the
Cdc25 phosphorylation, we mapped the site
of hChk1 phosphorylation on Cdc25C. The
Ser?!6 residue is the main site of phospho-
rylation of hCdc25C in vivo (19). hChkl
phosphorylated a 56—amino acid region of
the hCdc25C protein fused to GST (19)
but not GST alone (Fig. 4A). This 56—

amino acid motif contains four possible sites
of phosphorylation. Peptide analysis of pro-
teolytic fragments of full-length Hisg-
hCdc25C phosphorylated by GST-hChk1
revealed a single phosphorylated tryptic
peptide by HPLC. Edman degradation of

this peptide indicated release of radioactiv- -

ity in the third cycle (Fig. 4D). Further
degradation of this tryptic fragment with
proline endopeptidase resulted in a peptide
that released radioactivity in the first cycle
(17). The Ser?!¢ residue is the only site on
hCdc25C consistent with this phosphoryl-
ation pattern (Fig. 4D). To confirm this, we
constructed the Cdc25C S216A mutation
in GST-Cdc25C and Cdc25C(200-256).
Both were poor substrates for hChk1, con-
firming Ser?!® as the site of phosphorylation
(Fig. 4C). Serine-216 is also phosphorylated
by spChkl, demonstrating phylogenetic
conservation of this regulatory relation (20).

We have shown that the Chkl kinase
family is conserved throughout eukaryotic
evolution and that hChkl, like its S. pombe
counterpart, is modified in response to
DNA damage. This, together with the fact
that ATM-related kinases are conserved
members of checkpoint pathways and act
upstream of chkl in S. pombe, suggests that
this entire checkpoint pathway may be con-
served in all eukaryotes. hChkl directly

phosphorylates a regulator of Cdc2 tyrosine
phosphorylation, hCdc25C, on a physiolog-
ically significant residue, Ser?!6. Support for
this comes from the work of Peng et al. (20)
who have shown that the same site, which
is the major site of Cdc25C phosphoryl-
ation during interphase, binds 14-3-3 pro-
teins when phosphorylated and acts in an
inhibitory fashion on hCdc25C. Overex-
pression of the hCdc25C S216A protein
reduces the ability of cells to arrest in G, in
response to DNA damage as observed pre-
viously for the Cdc2AF mutants (12). The
overexpression studies alone do not prove
that the DNA damage checkpoint pathway
operates through tyrosine phosphorylation,
because hyperactive Cdc2 may be able to
bypass checkpoint control. However, in
combination with the fact that this inhibi-
tory serine is directly phosphorylated by the
DNA damage-responsive checkpoint ki-
nase hChkl, these results strongly imply
that DNA damage regulates the G,-to-mi-
tosis transition through control of Cdc2
tyrosine phosphorylation. These results sug-
gest a model whereby in response to DNA
damage, hChk1 phosphorylates hCdc25C
on Ser?!%, which leads to binding of 14-3-3
protein and inhibition of Cdc25C’s ability
to dephosphorylate and activate Cdc2, a
model that will require genetic verification.
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This model does not preclude a role for
other cell cycle regulators such as Weel in
the damage response (14). Furthermore, the
fact that hChk1 phosphorylated hCdc25A
and hCdc25B and that Ser®'® is conserved
among these Cdc25 proteins (19) suggests
that hChk1 may regulate other DNA dam-
age checkpoints, such as those controlling
the G;-to-S phase transition, through a
similar mechanism.
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Mitotic and G, Checkpoint Control: Regulation
of 14-3-3 Protein Binding by Phosphorylation of
Cdc25C on Serine-216

Cheng-Yuan Peng, Paul R. Graves, Richard S. Thoma,
Zhigi Wu, Andrey S. Shaw, Helen Piwnica-Worms*

Human Cdc25C is a dual-specificity protein phosphatase that controls entry into mitosis
by dephosphorylating the protein kinase Cdc2. Throughout interphase, but not in mi-
tosis, Cdc25C was phosphorylated on serine-216 and bound to members of the highly
conserved and ubiquitously expressed family of 14-3-3 proteins. A mutation preventing
phosphorylation of serine-216 abrogated 14-3-3 binding. Conditional overexpression of
this mutant perturbed mitotic timing and allowed cells to escape the G, checkpoint arrest
induced by either unreplicated DNA or radiation-induced damage. Chk1, a fission yeast
kinase involved in the DNA damage checkpoint response, phosphorylated Cdc25C in
vitro on serine-216. These results indicate that serine-216 phosphorylation and 14-3-3
binding negatively regulate Cdc25C and identify Cdc25C as a potential target of check-

point control in human cells.

A key step in regulating the entry of eu-
karyotic cells into mitosis is the activation
of the protein kinase Cdc2 by the protein
phosphatase Cdc25C. A complete under-
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standing of mitotic control requires eluci-
dation of the mechanisms that regulate the
interactions between Cdc2 and Cdc25C
throughout the cell cycle. Furthermore, al-
though tremendous progress has been made
in recent years in identifying proteins that
participate in checkpoint control, it is un-
clear how these proteins interface with core
cell cycle regulators to inhibit cell cycle
transitions (1).

The Ser?!® residue is the primary site of
phosphorylation of Cdc25C in asynchro-
nously growing cells (2). To determine if
phosphorylation of Ser?!¢ regulates Cdc25C
function, we generated HeLa cell lines that
allow conditional expression of either wild-
type Cdc25C or a mutant of Cdc25C con-
taining alanine at position 216 (S216A). In
these cells, expression of Cdc25C and
Cdc25(S216A) is under the control of a
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