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An image of comet Hale-Bopp (Cl1995 01) in soft x-rays reveals a central emission offset 
from the nucleus, as well as an extended emission feature that does not correlate with 
the dust jets seen at optical wavelengths. Neon was found to be depleted in the cometary 
ice by more than a factor of 25 relative to solar abundance, which suggests that ices in 
Hale-Bopp formed at (or later experienced) temperatures higher than 25 kelvin. A helium 
line emission at a wavelength of 584 angstroms was detected and may be attributable 
to charge transfer of solar wind a particles in the cometary coma. Ionized oxygen and 
another helium line contribute to an emission observed at 538 angstroms. 

T h e  Extreme Ultraviolet Exnlorer satellite 
(EUVE) provides spectroscopic measure- 
lnents of celestial (abjects in a wavelength 
rang5of 70 to  760 A and imaging in a 70 to  
180 4 (== 180 to  70 eV)  bandpass ( 1  ). A t  
760 A, t he  photon energy (16.3 eV)  ex- 
ceeils the bond energies in  molecules and 
the ionization potentials of most neutral 
atoms (except He ,  Ne,  and F);  hence, only 
spectral lines of He ,  Ne, F, and atomic ions 
are expected in the  extreme ~~ l t r av io le t  
(EUV) spectra of comets. H e  anii N e  have 
resonance l ~ n e s  in this range, and abun- - ,  

dances of N e  could serve to constrain tlre 
t e ~ n p e r a t ~ ~ r e  a t  which precometary ices 
formed. Only upper limits to ab~ulrdances of 
He ,  Ne ,  and A r  have been establisheil in 
comets 12). 1 ~ 1 t  those for N e  and A r  exceed- , , ,  

ed the  solar abundances hy more than a n  
order of maenitude. Solar lieht is falnt in 
the EUV, so even the strongest EUV emis- 
sions from lioilies such as the  moon, Mars, 
and Jupiter are near the detectLon liluit (3). 
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Hale-Bopp (C/1995 0 1 )  is perhaps the 
biggest and brightest cornet of this century; 
its nucleus Inass may exceed that of comet 
1PlHalley by a factor of 40 (4) .  Our  EUVE 
observation of Hale-Bopp was acquired 
from 14 to 19 September 1996, when the  
cornet was a t  hellocentric and geocentric 
d~stances  7 = 3.07 AU and 1 = 2.91 AU, 
respectively. T h e  total exposure tlme \\.as 
1.4 x 10i s, and its effective value was 
reduced to T = 9 X 104 s as a result of 
filtering (5). 

A soft x-ray image of Hale-Bopp in the  
range of 70 to 180 eV was obtained and 
corrected for hackgroiunil and for a known 
\.ignetting function (6 ) .  T o  improve the  
signal-to-noise ratlo, we conr~olveil tlre im- 
age with a Gausslan having a radius a t  
half-maximum of 1.5 X 10' km (Flg. 1A) .  
A n  optical irnage (Fig. lB) ,  enhanced to 
show ilust jets Inore clearly (i), does not  
correlate with the  x-ray image. T h e  s-ray 

the  sun and the  cornet \doc i ty  \.ector, and 
a n  extended repion of ern~ssion 1s seen to- 
ward the  soutlr\vest. A weak feature in the  
antlr~elocity ilirection is also seen. 

T h e  soft x-ray hrightness varies with dls- 
tance fro111 the hrightness center p2 (Fig. 2). 
T h e  x-ray l~rightness in Hale-Bopp is max- 
imum at  0.005 rayle~ghs and decreases by a 
factor of 3 to p?. = 2 X lfii km. T h e  
proiluction rate of x-ray photolrs Q, is 8 
( 2 2 )  x 10" photons s-' for p,, = 4 X 10' 
k ~ n  (9 ,  10)  ( F L ~ .  3) .  If charge transfer is a 
do~n inan t  excitation process, then [ ~ ~ s l n g  a 
spectrum from (1 L?)  and our measurement] 
we expect a total x-ray (E  > 80  eV)  lumi- 
nosity of 3.5 X 10" and 2.6 X lo2' photons 
s-' for p = 4 x 10' a d  2.5 X 1Cli km, 
respectively. 

T h e  N e  736 A line is traditionally used as 
a tool to search for Ne.  However, the second 
resolralrce line for Ne  (tlre analog of Lyman- 
p) at  630 A coincides with a strollg ernissioll 
line in the solar spectrum and therefore pro- 
\;ides better iletectio~l prospects thall the 736 
A l ~ n e ,  hy two orders of y a g ~ ~ i t u d e  (12). T h e  
ad\.antage of the 630 A line reaches three 
orders of lnag~r~tude for FUVE, which bas a 
lower efficiency at 736 A than at 63q A. 

N o  cometary signal 1s seen at 630 A, and 
a 2a upper limit correspo~lds to 45 counts 
for the  largest bin (Fig. 4 ) ;  this limit corre- 
sponds to Q,, < 4 X 10" SF' (13) .  T h e  
p ~ ~ d ~ ~ c t i o n  rate of oxygen (as H 2 0 ,  CO, 
and CO,)  was equal to 6.6 x 10'"s-' during 
the observatio~r (4).  Hence, the  Ne /O ratio 
in the  gas alone is < 6  x lo-' in Hale-Bopp. 
T h e  ratlo of oxygen in the  Just and gas was 
1.3 ln cornet 1 P/Halley (1 4 ) .  Scaling to the  
iiust and gas productions in both comets ( 4 ,  
I - ; ) ,  we find that this ratio is -8 in Hale- 

Table 1. Observations of soft x-rays In Hyakutake and Hale-Bopp. X-ray data for Hyakutake are fro~n 
(37); r is the helocentric distance, Q, is the x-ray photon production rate observed \~ithin a colneto- 
centrc radius p,, p, is the offset of the brghtness center from the nucleus. Q,,, is the gas production 
rate (4, 38). and Afp 1s proportonal to the dust production rate (4, 38). Afpx 1s discussed In (35). 

Parameter Hyakutake Hale-Bopp 

r (AU) 1.07 3.07 
Q, (photons s I )  1 (k0.2) x loax 8 (22)  x 
PO (km) 1.2 x 10" 4 x 10" 
Pe (k1n) 5.6 (21)  ,x 1o4i- 2.7 (21.2) x 10' 
Qws (s '1 2 x I oZ2 6 X 10'" 
Afp (m) 79 630 
(AfP), (m) 3700 7500 
(Afp),iAfp 47 12 

'1 02"hotons s ' from (34). i'3 x 10"m from (34) 
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Fig. 1. (A) EWE image of 
Hale-Bopp at photon ener- 
gies of 70 to 180 eV (soft 
x-rays). The directions to the 
sun and of the comet's or- 
bital velocity, projected onto 
the sky plane, are shown. 
North is at the top and east 
is to the left. (B) Optical im- 
age of Hale-Bopp on 16 
September 1996, with same 
orientation and scale as in 
(A). An azimuthally averaged 
brightness has been sub- 
tracted from the original im- 
age to enhance the contrast 
on the dust jets. The dust 
jets are not seen in the x-ray 
image, and an extended fea- 
ture in x-rays is not seen in 
the optical image. 

Bopp (which is very dusty) if the dust prop- 
erties (density, composition, size distribu- 
tion) are the same in these two comets. We 
then estimate NelO < 7 X lV4 in the bulk 
qucleus of Hale-Bopp. In comparison with 
the solar ratio of NelO = 0.15 (1 6), the Ne 
in Hale-Bopp is depleted relative to the 
solar abundance by factors of more than 25 
and 200, respectively, in the ice and in the 
sum of ice and dust. 

Laboratory studies demonstrate that Ne 
is trapped efficiently in water ice only at 
temperatures below 25 K (17). Even if 
trapped in icy grain mantles, Ne can only be 
retained if the ices remain at sufficiently 
low temperatures, owing to the high mobil- 
ity of noble gases in an ice matrix. Warming 
to higher temperatures (-50 K) will permit 
Ne to escape while less mobile species 
trapped in water ice (for example, C2H6 and 
CO) are retained. Thus, the Ne abundance 
tests the maximum temperature to which 

Radius (Id Ian) 

Fig. 2 Mean brightness of Hale-Bopp in soft x- 
rays as a function of distance from the brightness 
center. The function Alp is also shown (solid line); 
this function describes the brightness distribution 
expected for dust and gaseous parent molecules. 
One rayleigh corresponds to a column production 
bf 10s photons ~ m - ~  s-I (4- ster)-' . 

precometary ices were exposed before incor- 
poration into comets. Laboratory measure- 
ments cannot duplicate the long time scales 
experienced by ices in the natal cloud core 
(up to lo7 years) or in the solar nebula, so 
their use as guides is uncertain in this as- 
pect. However, the observed temperature 
dependence of the ability of the ice to nap 
gas as it forms should be more certain. Our 
nondetection of Ne agrees with predictions 
(1 8) that were based on the laboratory data. 

Hale-Bopp is an Oort cloud comet, and 
the absence of Ne is consistent with the 
current view that Oort cloud comets formed 
in the Jupiter-Neptune region of the solar 
nebula (1 9) where temperatures exceeded 
50 K. Kuiper belt comets formed in the 
trans-Neptunian region and some may in- 
corporate a solar abundance of neon (Nel 
0 = 0.15), because nebular temperatures in 

I " " I  I ' 1 1 - "  

- 

Radius (Id Ian) 

Fig. 3. Total x-ray emission of Hale-Bopp as a 
function of aperture (radius). A slope a of the func- 
tion corresponds to a power index in Qx = Apoa. 
Thevalueofavariesfrom2atpo=0.5 x 1O"km 
to 0.6 at 7 x 1 O" km; a = 2 is expected if the x-ray 
intensity is proportional to the local solar wind flux . 
alone (collisionally thick case), and a = 1 is ex- 
pected if the x-ray intensity is proportional to the 
column density of gas or dust for spherically sym- 
metric uniform outtlow. 

that region could have been <25 K. 
An emission line was detected in the 

long-wavelength (LW) spectrum near 538 
A (Fig. 4) with a photon production rate of 
5.2 X photons s-I for p = 2.5 X 105 
km (13), possibly from Q+ 538139 A or He 
537 A. Excitation of O+ 538139 A proceeds 
by photoionization of neutral 0 and OH by 
solar photons with h < 339 A and 303 A, 
respectively. Emission rate factors are equal 
to 2.3 X 1C9 and 1.2 X 1V9 photons s-' 
atom-', respectively (20). Our caloulations 
show that 0+ 538139 A could explain 60% 
of the observed emission. The rest may be 
attributable to the He 537 A line. 

The He 584 A line is seen in all spectra 
(Fig. 4). G-oronal extinction at 584 A is 
negligible at the comet's geocentric velocity 
of 9.6 krn s-' (21 ). The difference (Fig. 5, C 
and D) between the LW spectrum near 584 A 

Fig. 4. LW E M  spectra of Hale-Bopp at 370 to 
680 A for various bin sizes. The comet is too faint to 
be detected by the SW spectrometer (1 1). The LW 
spectra were extracted in bins of 540,000 x 
23,000 km (upper trace), 540,000 x 90,000 km 
(middle trace), and 540,000 x 360,000 km (lower 
trace), corrected for the background. The signal- 
to-no'w ratio is equal to 3.8 for the He 584 8, line in 
the middle spectrum. Ordinates of the upper and 
middle traces are shied for convenience. 
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(Fir- 5'4) and tlie backgrouuii (Fig. 5B) s11on.s 
tlie presence of the He 11ne 11 it11 a prod~~ctloii  
rate of 1.2 X LC'" photoiis s-' for p = 2.5 X 
lc?' km. Nei>n is absent in tlie i i ~ l c l e ~ ~ s ,  and 
t h ~ s  nleaiis that hellu~ll-the most mob~le  anid 
T-olatile pa<-canni>t he reta~neil 111 the IILI- 

cleus. Hel~run L~riihablv appears 111 tlie conlet 
becauie of charge transfer fro111 ~ o l a r  \\'111d 
a-p;ut~cles to cometan. neutrals. 

N o  emlssion \vas oliserveil 611 tlie nleili- 
ulu-tvavelenyth (14G to 3Sc7 ,\) sl~ecrruin, 
and a 2cr kipper 111liit t;lr tlie production o t  
H e p  3114 A\ photolls 1s 7 x 111" pliotolls 7-' 

for p = 1 .5  x lo5 kin. Accordiny to statis- 
tics, the counts in  t \ ~  l~ii is  in tlie 
s p e c t r ~ ~ m  in FIG. 4 s l i o ~ ~ l d  esceeil a ?a level 
even ~t n o  real e~l i~ss ioi i  1s present. Proha- 
1 ~ 1 ~ .  tliese are the  13111s at  465 ailil 435 A \ .  

Ol?servat~ons o t  rlie H e  aiiii H e  lilies 
liiay be a d ~ a e ~ i o s t l c  tool to study ~n te rac -  
t ~ o l i  of the solar w1iii1 n.~rh comets. ('liarge 
traliskr e s c ~ t a t i o n  of H e  1s ~ m i l a r  to that of 
x-raj-s (1 c? ,  2 2 ,  2 3 ) .  Therefore, we compare 
tlie measured cometary photon L ~ r o L l ~ ~ c t i o n  
rates o t  three lines for p = 2.5 X I t '  km: 
1.2 X lG'\~licitons s p '  for Hz 584 A% ? X 
10" photons s '  for H e  537 A,  and < 7  x 
lc7" l>hotons s-- for H e t  1114 A4. 

TI?-o escltatioli processes may he consid- 
ered for rlleie emiss~ons: resollalit scatter- 
iiig o t  solar pliotcx~s h! H e  and  he^^. and 
p ro~np t  e s c i t a t ~ o n  in  two- and one-electron 
captures by solar n ~ n d  a-particles. Resonant 
scatteri~ig emisslon rate factors are equal LO 

7.5 X lc?-" pliotons s '   tom ' f i ~ r  554 '5, 
1.3 X 1 0 ~ '  photons s-'  atom^ ' for 537 A, 
::nil 2.3 X 1c7 ' photons s-' a t o m  ' for 304 
A, at  1 AU for iolar minimum (24) .  If H e  
were e ~ e c t e ~ l  from tlie nucleus, t hen  its res- 
onant  scatteri~lg ivoulil correslionil to He10  

Wavelength (A) 

Fig. 5. A potion of the Lit!/ spectr~~m, stio3:/~ng the 
presence oz the He 383 A I ne (A) Sum o' 60 central 
rows on the aetector Is~gna backgrotlnd the 
s p e c t r ~ i ~  of the co i~e t  In a bln or540,000 X 23,000 
Km) iB) Sum of 340 rows above ana belo;?, the 
central rows d~v~aed by 9 (backyro~lna, obta~nea 
from pos~t~ons off the coiretj iC1 The dfference o' (Aj 
ana I B ~  ID; Same as ICj, b~ , t  bltined by 'our pxes i l  

the d~sperson alrect on Oranates of IAj, (C) and ID, 
are sl-i~tred by 50. 100, and 5 0  co~,nts per bln 'or 
convenience 

= 3 X 1Gp4 ill c o ~ l ~ e t a r y  gas anil 4 X l o p '  
ill gas anLl ilust, that  is, depleteil 1.y kctors  
of 2 X 1 r 6  and 3 X l o p '  relative to tlie 
solar a b ~ ~ n d a n c e .  Hoa-ever, even these 1-al- 
ues are tilo 1ilgh ;ruJ ~ i n c o ~ n ~ a t ~ l > l e  n'itli tlie 
lahoratorv Ja ta  (1 7). One-electron capture, 

H e - - h l + H e  - X I + - E  ( I )  

is a nearl\- rzsonant process for e s c ~ t a t i o n  of 
H e p  3C4 A ~ v ~ t l i  a v~elii  ot -17.5 (25) .  
TTI-o-electron capture, for example 

+ OH' - 45 11 eL. ( 2 )  

1s Iveaker t l l a~ i  one-electron capryre 17y a 
factor of 2 (26) .  A yield o t  H e  534 X nlay he 
-113 in t l l ~ s  process (27).  Tliese values 
i'avor a total charge transfer rare of -2 x 
l c ? 2 ~ - 1  tor a-par t~cles  and neg l ig~ l~ le  con- 

t ~ i b ~ ~ t ~ o i i s  of resopalit aca r t e r in~  to H e  537 
A ancl H e t  304 .4. Resoli;;nt ic,itterllig is a 
~na i i i  process for H e  584 A (28) .  

Of the  manj- processes proposeLl for tlie 
escltatloii ot conletary s-rays (12 ,  22. 23,  
29.  32 ) ,  ellarge trxlster of solar wind heal.? 
lolls (117, 2 2 ,  23)  and scatteriilg of solar 
x-rays by s~na l l  (12 ' "  g )  idust particles (23 ,  
29) seem to 1.e the  most promisine. Charge 
transfer escltes s-ravs ,111il H e  em~s.;ions. 
Cross aect~ons  tor hea1.y ions esceeil rllose 
for a-particles I?\. a factor of lc? to 3c7 in this 
1isocess ( 3  1 ), a i d  the x-ray l u ~ i i ~ ~ i ~ s ~ t y  ex- 
Liected tor linear sca l~ng  of rhls process 1s 22 
x (2  x 12")/35 ;= 111" photons s p '  for p 
= 2.5 X 117' k ~ n  (35 ia the  ratio o t  cu- 
~ ~ a r t l c l e s  to Ilea\-v ions in  tlie solar n - ~ n d ) .  
T h ~ s  1.a1~1e 1s even 111glier t han  the total 
s-ra\- (E > SG e i ' )  lum~nosity of 2.6 X lc?" 
pliotons s p '  obtaineil tiom our measure- 
ment.  Ho\vever. horli tlie Iirigliriiess offset 
pi, = 2.7 X 12' l i ~ n  ancl the slope cu .̂ 2 
(Flg. 3) favi~r  collisionally t l i~ck  con~lit ions 
tor tlie solar n.ini1, \vith a Lleviatioi~ o t  a 
tactor o t  h = ? i ron these conditions a t  p = 

2.5 x l G i  km (Fig. 3) ;  then tlie linear 
scalilip is iiot v a l ~ d ,  aliJ  the especteil total 
s-ray (E  > di? eV)  l~unliliosity is 3 X lG1 
photons s p l  (32) .  Tlie excelleiit agreement 
her-ween tliis estllnate anLl oL1r meas~lreil 
x-ra\ l u m ~ n o s ~ t \  sugeests cliaree transfer as 
the  i l om~nan t  process of x-ray exc~ta t ion.  

Compar~son ot  tlie Jlstaiices pB betxeen 
the I ~ r ~ ~ l i r n e s s  center anil the nucleus in Hale- 
Boyp alid Hyakutake (Tahle 1 )  may also he 
used to resolve t h ~ s  question. If small Just 
lxrriclcs are resL~onsihle tor tlie emissioii an;l 
they are ejected d~rectl\- trom the nr~cleus. 
t l ie~i  the ~1isl~lacemenr tlie hriglitiiess cell- 
ter I> related to the illrection ot  , l ~ ~ s t  ejection. 
to dust velocirv. to the ettects of solar railla- 
tion pressure on i l ~ ~ s t ,  and to the cliarginp ot 
small d~lat Liart~cles anil t h e ~ r  re111o1-a1 l ~ v  elec- 
tromagnetlc ficxces. Tlie L 1 ~ s y l a c e ~ ~ ~ e ~ ~ t  shi)ulil 
be proportioiial to T" ~ v ~ r l i  a = 1 to 1.5 (33) 

and iloes 110t ilepenil 1111 the ahaolute proLluc- 
tion rate for dust: tlie observed cilsplace~nelit 
ratio of 4.5 i 2.3 agrees 1~1th the expected 
value of 3 to 5. It cliarge tra~nsfer 15 responsil~le 
for x-rays, then ~nolecular column al~~undances 
from the l7rightness center to mf~nity,  N = 

QL,,-i(41;ppt,), shoulil he the sanie f ~ ~ r  hot11 
comets. W e  take the velocity as 111 (13) and 
the Qr,, rates t1.0111 Table 1, so the d~splace- 
lnellt ratlo is 5 for this process. Both scattering 
hv s~nall  d~ls t  ancl cliaree rransfcr n-ith co- 
metary dust agree wit11 tlie meas~~red cl~sylace- 
lllelit ratio 134). 

Tlie relative production rates ot  x-rays in 
Hale-ROL~I, and Hvakutake may also be used 

L 

to identify tlie excitation process. Ratioa of 
the &st-scatrer~lig factors in the s-ray 
spectrum (15) to those 111 the ~ ~ s i b l e  spectrum 
il~ffir hy a factor o t  4 (Table I ) ,  aliil t l i~s  does 
not favor s ~ ~ i a l l  dust scattering. If s~nall  ~iarti- 
cles are "glued" 111to large gra~ns  1.y lev or 
c3rgalilc refr,lctory mater i~l ,  rheii tlie l i ~ ~ l i e r  
dust temperatures at 1 AU (-325 K) com- 
pared with those at 3.1 AU (-19G K )  may 
lead to hieller ~ i ro~ l~ lc r ion  efticiencie\ tc>r very , 

small dust and may explain the d~tierence. It 
charge traiisfer is tlie main excitation process, 
t l ie~i  tlie efficle~icles of this exc~ ta t io~ i  in 
Hale-Bopp anLl Hyakutake d~fier onl\ by a 
i'actor of 1.5 136). T l i ~ s  srn,rll ditierence anJ  
o ~ l r  o1lser~-'ition of l iel~um fa\.ors the cllarge 
rranster meclian~sm. 
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