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Activation domains are functional modules that enable sequence-specific DNA binding
proteins to stimulate transcription. The structural basis for the function of activation
domains is poorly understood. A combination of nuclear magnetic resonance (NMR) and
biochemical experiments revealed that the minimal acidic activation domain of the
herpes simplex virus VP16 protein undergoes an induced transition from random coil to
a helix upon binding to its target protein, hTAF,31 (a human TFIID TATA box-binding
protein-associated factor). Identification of the two hydrophobic residues that make
nonpolar contacts suggests a general recognition motif of acidic activation domains for

hTAF,31.

Activation of transcription in eukaryotes is
directed by regulatory proteins that recruit
the transcriptional machinery and chroma-
tin remodeling factors to the promoter.
Typically, these regulatory proteins are
modular, having distinct domains for se-
quence-specific binding to DNA and for
transcriptional activation through interac-
tions with other proteins (I). Activation
domains are classified according to the pre-
ponderance of amino acid residues such as
glutamine, proline, and those bearing acidic
side chains. Of these classes, the acidic
activators have been the most extensively
studied (2). Notwithstanding the gains that
have been made in identifying the targets of
acidic activation domains (I) and elucidat-
ing the importance of particular residues for
their function (3), the structural basis for
the ability of activation domains to stimu-
late transcription remains poorly under-
stood (2, 4). Here, we report that the acti-
vation domain of the herpes simplex virus
VP16 protein undergoes an induced coil-to-
helix transition upon interaction with its
target protein hTAF 31, with residues
along one face of the nascent helix making
intermolecular contacts to hTAF,31.

The acidic activation domains of VP16
and tumor suppressor p53 directly target
hTAF;31 and its Drosophila homolog,
dTAF;40; the strength of this interaction
correlates with the ability to activate tran-
scription in vitro (5—7). The molecular in-
teraction has been mapped to the NH,-
terminal 181 amino acids of hTAF,31
(TAF,_,4;) and a COOH-terminal segment
of the VP16 activation domain (VP16,
residues 452 to 490) (5). Because the sta-
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bility of TAF, g, is poor, we overexpressed
a smaller fragment, TAF,_,,o, which com-
prises the region of highest homology to
dTAF,40 (8) and binds VP16 as tightly as
does TAF, g, (9). TAF,_,,, was soluble up
to ~300 uM in pH 6.2 buffer and thus was
deemed suitable for NMR studies.

To analyze the interaction between
TAF, 4, and VP16, we performed 'H-">N
heteronuclear single-quantum coherence
(HSQC) NMR experiments with °N-
labeled VP16, and varying amounts of un-
labeled TAF,_j40 (10). The enrichment of
VP16, with 15N permitted selective detec-
tion of signals from VP16, but not from
unlabeled TAF;_140. The limited dispersion
of the backbone N and 'HN chemical
shifts in the HSQC spectrum of 1°N-labeled
VP16 alone (Fig. 1A) and the intermedi-
ate values (~7 Hz) of THN-'HC® coupling
constants {I1) indicated that VP16 alone
has negligible secondary structure (12). Ti-
tration of *N-labeled VP16, with unla-
beled TAF,_, 4, resulted in progressive rath-
er than bimodal changes of the backbone
BN and 'HN chemical shifts (Fig. 1A),
thus indicating that VP16 interacts weakly
with TAF,_,,, and hence exchanges rapidly
between the free and bound states on the
NMR time scale (13). Sequential assign-
ment of the HSQC cross-peaks (14) estab-
lished that the backbone-perturbed residues
are located within a region at the COOH-
terminal end of VP16 that encompasses
residues 475 to 484 (Fig. 1B).

Gross changes in backbone chemical
shifts can generally be ascribed to global
alterations in folded structure. To assess the
importance of the side chains, we analyzed
the chemical shift perturbations of the 3
protons in VP16 upon complexation with
TAF, j4 (15). Significant chemical shift
changes were observed only for the 8 pro-
tons of Asp*??, Phe*”, Leu*®?, and Asp*8¢
(Fig. 1C). These four residues lie within and

adjacent to the region of VP16, that is
suggested by backbone chemical shift per-
turbation to undergo an induced folding
transition.

To analyze independently the impor-
tance of residues in VP16, for both the
interaction with TAF,_,,, and activation of
transcription, we performed in vitro bio-
chemical assays with a series of VP16 de-
letion mutant proteins (Fig. 2ZA). For detec-
tion of TAF-binding activity, each deletion
mutant was fused to glutathione-S-trans-
ferase (GST) and analyzed for the ability to
pull down TAF,_,,, (Fig. 2B) (16). Dele-
tion of residues 475 to 490 from GST-
VP16, abolished TAF binding, whereas de-
letion of residues 452 to 468 retained bind-
ing activity. Further deletion of residues 486
to 490 had no detectable effect; however,
removal of residues 469 to 473 or 481 to
485 resulted in a loss of binding activity. For
assessment of the ability of the deletion
mutants to activate transcription, each mu-
tant was fused to the yeast GAL4 DNA
binding domain (residues 1 to 147) and
analyzed for the ability to activate tran-
scription in vitro with HelLa nuclear ex-
tracts (Fig. 2C) (17). GAL4-VP16, stimu-
lated transcription of the reporter construct
containing five GAL4 recognition sites (5).
A fusion construct in which residues 452 to
468 of VP16, were deleted activated tran-
scription as strongly as did GAL4-VP16,
itself. However, deletion of residues 475 to
490 reduced activation potential; this was
slightly above GAL4 activation alone. Al-
though deletion of residues 486 to 490 had
no detectable effect, further deletion of
residues 469 to 473 or 481 to 485 reduced
transcriptional activity. Thus, the tran-
scriptional activity of VP16 is directly
correlated with the strength of its binding
to TAF, 4o this is consistent with the
notion that the interaction between these
two proteins is responsible for the activa-
tion signal observed in our in vitro assays.
Moreover, the COOH-terminal segment
of VP16 (VP16,45 455, residues 469 to
485) is necessary and sufficient to bind
TAF, ;4 and activate transcription in
vitro, and it corresponds to the region that
was mapped through NMR experiments to
interact with TAF; ;4.

To determine the structure of
VP16,460_455 bound to TAF, |, we per-
formed transferred nuclear Overhauser ef-
fect (TRNOE) experiments. TRNOE relies
on rapid exchange between the free and
bound states for a relatively small ligand in
the presence of its macromolecular recep-
tor. Under conditions of rapid exchange,
negative NOEs conveying conformational
information about the bound ligand are
transferred to the resonances of the free
ligand (18). In the ideal case, NOEs from
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Fig. 1. (A) Expanded 'H-'°N
HSQC spectra of '*N-labeled p

VP16 (900 uM) in the absence
(black) or presence (red) of
TAF,_, 40 (300 uM). Significantly
shifted cross-peaks are indicat-
ed. Glycine cross-peaks are not
shown; the cross-peak from
Gly*84 shifted in the presence of
TAF,_, 4o (B and C) Histogram
showing "HN and '*N (B) and
B'H (C) chemical shift changes
in VP16, induced by binding of
TAF,_, 4o The positions of ami-
no acids are indicated. Chemi-
cal shifts of the B protons were
determined by "H-"SN NOESY-
HSQC and 'H-'SN TOCSY-
HSQC experiments. When di-
astereotopic B-proton signals
were observed, only the chemi-
cal shift change of the proton
having the largest effect is indi-
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the free ligand itself approach zero because
of its low molecular weight; hence, NOEs
can be detected primarily from the bound
ligand in the presence of a substoichiomet-
ric amount of the receptor. As anticipated,
free VP16 44 455 exhibited very few NOEs;
only sequential NOEs between C*H and
NH protons [d(i,i+1) NOEs] were clearly
observed, indicative of an extended ran-
dom-coil structure (19). In contrast,
VP16,49_4g5 in the presence of 0.1 mole
equivalents of TAF,_,,, showed numerous
NOE cross-peaks, including a substantial
number arising from dyg(i,i+1), d (i),
and d_4(ii+3) NOEs. The overall pattern
of the NOE connectivities (Fig. 3B) is char-
acteristic of that observed for a-helical sec-
ondary structure, especially in the region
from Asp*7? to Leu*®’. Thus, residues 472 to
483 of VP16, and perhaps even residues
flanking this region, adopt an a-helical
structure when bound to TAF,_,, (20).
The projection of residues 472 to 483
of the VP16 activation domain onto a
helical wheel is shown in Fig. 3C. Three of
the four residues whose side chain B
protons are perturbed upon binding to
TAF,_,4 lie along one face of the helix.
These three residues—Asp*’2, Phe*’?, and
Leu*®3—may directly contact chemically
complementary residues of TAF_ ..
Consistent with this idea, replacement of
Phe*”” and Leu*® with Ala reduced
TAF,_,,, binding affinity and transcrip-
tional activation (Fig. 2, B and C, respec-
tively) (21). Whereas Phe*” and Leu*®? of
VP16, presumably make hydrophobic
contacts to TAF, ., Asp*’? may partici-
pate in salt-bridge or hydrogen-bonding
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interactions. The fourth residue that ex-
hibits B-proton chemical shift perturba-

tion upon binding to TAF, ,,,, Asp*®,

Fig. 2. In vitro biochemical ex- A
periments. (A) Schematic repre-
sentation of VP16 deletion mu-
tant proteins used for in vitro
protein-protein interaction and
transcription assays. Residues

whose backbone NH chemical ~ VP164ss-490
shifts (light gray) and p proton VP16
chemical shifts (black) were sig- R
nificantly changed upon binding  vp1s,;,

s 4-485
to TAF, _,,, are indicated. (B) In
vitro protein-protein interaction = VP16469 450

assays. GST and GST-VP16

beads were incubated with TAF,_, ,, in buffer
containing 50 mM NaCl and 0.01% NP-40.
After extensive washing, the bound proteins
were resolved by SDS-PAGE. Lanes 1 and 2
show the protein markers and TAF,_, ,, (20%
of the input TAF,_, ,,), respectively. Binding of
TAF, 4,0 to GST-VP16; (lane 3), GST-
VP16,55_490 (lane 5), and GST-VP16,5g_4a5
(lanes 6 and 9) is evident. TAF,_, . is not re-
tained on GST-VP16,,_,,, (lane 4) and GST
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(lanes 8 and 12) resins. TAF,_, ,, binds to GST-VP16,,,_,5s (lane 7) and GST-VP186,55_.,q, (lane 10)
resins much more weakly than to GST-VP16.. Replacement of both Phe*™® and Leu*®® with Ala in
GST-VP16,59_4a5 (lane 11) greatly reduced binding affinity. The position of TAF, _, ,,, is indicated by an
asterisk. (C) In vitro transcription assays. Transcriptional activation by GAL4-VP16 mutant proteins was
assayed in Hela nuclear extracts. The reactions contained 2 pmol of the purified proteins and 100 ng of
G;BCAT template containing the adenovirus E1b promoter linked to five GAL4 recognition sites. The
products of the transcription reactions were analyzed by primer extension. Lane 1 shows basal tran-
scription without GAL4 proteins. Transcriptional activation by GAL4-VP16, (lane 3), GAL4-VP16,54_4e0
(lane 5), and GAL4-VP16,4,_,s5 (lanes 6 and 9) is greater than that observed for GAL4 alone (lane 2).
GAL4-VP16,5,_474 (lane 4), GAL4-VP16,,,_,qs (lane 7), and GAL4-VP16,44_,q, (lane 10) activate

transcription much less than does GAL4-VP16

(lane 3). Lane 8 shows activated transcription by

GAL4-VP18,, which contains both the NH,-terminal and COOH-terminal subdomains (residues 413 to
490) of the VP16 activation domain. Replacement of both Phe*”® and Leu®*®® with Ala greatly reduced
transcriptional activation (lane 11). The position of the extension products is indicated by an arrowhead.
The weak activation signal generated by GAL4, ., (lane 2) has been observed previously (25).
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contribution to the protein-protein inter-
action, or possibly that the new COOH-
terminal carboxyl generated through trun-
cation functionally replaces the Asp*86
side chain.

The acidic activation domains of p53
and nuclear factor kB (NF-kB) p65 have
“also been reported to bind hTAF;31 (6,
22). Sequence comparison of the relevant
regions of VP16, p53, and p65 reveals a
pattern of similarity (Fig. 3D): All three
activation domains contain a Phe separated
by a two-residue spacer from a hydrophobic
doublet. Our NMR studies provide direct
evidence that at least two of these three
residues contact TAF,_,,.. Furthermore,
mutation of the hydrophobic residues in
this motif abrogates binding of the p53
activation domain to hTAF,;31 and in vitro
transcriptional activation (6); the high pro-
pensity of a helix formation by the p65
activation domain has been noted, as has
the importance of Phe for function (23).
Thus, this FXX®® motif may represent a
general recognition element of acidic acti-
vation domains for TAF;31. The recent
crystal structure of the p53 activation do-
main bound to the attenuator protein
MDM2 reveals that the segment containing
the FXX®® moiety folds to form an a
helix, from which the three hydrophobic
residues project to make nonpolar contacts
with MDM2 (24). Our study provides sup-
port for the hypothesis that the MDM2-p53
interaction mimics that of TAF 31-acidic
activation domains, even though MDM?2
and TAF;;31 appear to be structurally un-
related (22, 24).
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Fig. 3. (A) Amide region of a 200-ms NOESY spectrum of
VP16,5¢_4a5 (3 MM) in the presence of TAF,_,,, (0.3
mM). The identities of residues that exhibit NOE cross-
peaks in this region are indicated. The intensities of trans-
ferred NOE cross-peaks are generally weak when com-

pared with the diagonal peaks because the diagonal
peaks arise from both free and bound ligands (26). (B) Summary of the NOEs abserved from the TRNOE experiments. The thickness of the lines indicates the
relative intensities of the NOE cross-peaks. (C) Helical wheel presentation of residues 472 to 483 of VP16. The residues whose B-proton chemical shifts were
changed upon binding to TAF,_, ,, are indicated by boxes. (D) Sequence comparison of regions of VP16, human p53, and human NF-kB p65. The activation
domain sequences are aligned by the FXX®® moiety. Purple circles mark the residues of VP16, whose B protons are perturbed upon binding to TAF,_, ..
Green circles mark the residues of the p53 activation domain that directly contact MDM2 (23). Acidic residues are highlighted in red. Although the B-proton
chemical shift of Asp*®® was significantly perturbed upon binding to TAF,_, ,,, the present biochemical experiments indicate that Asp*®® is not essential for
TAF binding and transcriptional activation. Black coils above the sequences of VP16, and p53 represent the regions over which a helix induction is observed
upon binding to TAF,_, ,, and MDM2, respectively. Amino acid abbreviations are as in Fig. 1.

A long-standing puzle relates to the
specific role of the acidic residues in the
acidic activation domain. Evidence suggests
that acidic residues play an important role
in the function of acidic activation domains
(3); however, the results presented here and
elsewhere (3) indicate that hydrophobic
residues also play an important role. Al-
though 5 of the 17 residues that make up
the minimal activation peptide VP16 ,5_445
are acidic, only one of these, Asp*’?, exhib-
its significant perturbation of its B-proton
chemical shift upon binding to TAF,_,,,.
Asp*”? may make a direct, specific contact;
however, this contact is apparently not con-
served in the activation domains of p53 and
p65. Moreover, the positions of the acidic
residues in acidic activation domains
generally appear to be unimportant. This
seeming paradox can be resolved by a model
in which the acidic residues establish
long-range electrostatic interactions with
hTAF;31. Such electrostatic forces would
attract basic hTAF; 31 over relatively long
distances in solution, thereby increasing the
rate at which the activation domain locates
its target. Once the activation domain and
hTAF;31 come into close range, the acti-
vation domain undergoes an induced struc-
tural transition to an « helix, thereby en-
abling the establishment of direct hydro-
phobic contacts with nonpolar residues of
hTAF,31. Because such folding transitions
are highly cooperative, the coupling of fold-
ing to targeting by activation domains pro-
vides a mechanism whereby multiple weak
interactions can produce a pronounced bi-
ologic response.
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Accelerated Aging and Nucleolar Fragmentation
in Yeast sgs1 Mutants

David A. Sinclair, Kevin Mills, Leonard Guarente

The SGS7 gene of yeast encodes a DNA helicase with homology to the human WRN
gene. Mutations in WRN result in Werner’s syndrome, a disease with symptoms re-
sembling premature aging. Mutation of SGS7 is shown to cause premature aging in yeast
mother cells on the basis of a shortened life-span and the aging-induced phenotypes of
sterility and redistribution of the Sir3 silencing protein from telomeres to the nucleolus.
Further, in old sgs7 cells the nucleolus is enlarged and fragmented—changes that also
occur in old wild-type cells. These findings suggest a conserved mechanism of cellular
aging that may be related to nucleolar structure.

The sGs1 gene of Saccharomyces cerevisiae
is a member of the RecQQ helicase family
that includes human BLM (mutations in
which cause Bloom’s syndrome) (1), human
RECQL (2), and WRN (3). Patients with
Werner’s syndrome contain two mutant al-
leles of WRN and display many symptoms
of old age including graying and loss of hair,
osteoporosis, cataracts, atherosclerosis, loss
of skin elasticity, and a propensity for cer-
tain cancers (4). Cells isolated from pa-
tients with Werner’s syndrome divide ap-
proximately half as many times in culture as
those from normal individuals (4).
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Yeast cells lacking topoisomerase i1 ac-
tivity (top3) are unable to unwind negative-
ly supercoiled DNA efficiently and thus
grow extremely slowly. Mutations in SGS1
were first identified by their ability to sup-
press the slow-growth phenotype of top3
strains (5); the Sgsl protein was subse-
quently shown to interact physically with
both topoisomerases 1l and 11l (5-7). SGSI
is required for the fidelity of chromosome
segregation and the suppression of recombi-
nation at the ribosomal DNA (tDNA) ar-
ray and other loci (5-7).

Cell division in S. cerevisiae is asymmet-
ric, giving rise to a large mother and a small
daughter cell. Mother cells undergo, on av-
erage, a fixed number of cell divisions and
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