
core are within the range of variability ob- 
served during the LIA (Fig. 2)  (10, 29). 
Regardless of the date chosen for its termi- 
nation, the LIA was one of the shortest cold 
intervals of the last 110,000 vears (30) and . . 
was substantially shorter than some other 
major Holocene rapid climate change 
events (2). We suggest it is possible that, m 
terins of polar atmospheric circulation, con- 
ditions common during the LIA may have 
persisted into the 20th century and may still 
persist. 
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The Influence of Island Area on 
Ecosystem Properties 

David A. Wardle,*-tOlle Zackrisson, Greger Hornberg, 
Christiane Gallet 

Island area is frequently a major determinant of the species composition of biological 
communities; community structure, in turn, often has important effects on ecosystem- 
level properties. Fifty islands of varying area were selected in an archipelago in the 
northern Swedish boreal forest zone, in which larger islands burn more frequently than 
smaller ones through wildfire arising from lightning strike, thus inducing a significant 
relationship between island area and plant species composition. This relationship was 
found to be a major factor in determining several ecosystem-level properties of these 
islands, including standing biomass, plant litter decomposition, nitrogen mineralization, 
terrestrial carbon partitioning, humus accumulation, and plant nitrogen acquisition. 

Gradients of island area have frequently 
been used to helo understand the factors 
responsible for structuring ecological com- 
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munities ( I ) ,  and it is apparent that the 
area of islands is important in regulating 
the occurrence and abundance of compo- 
nent species (2)  as well as their interac- 
tions (3). There is an increasing awareness 
that individual species effects in commu- 
nities are important determinants of eco- 
system-level properties and, consequently, 
of functioning of the ecosystem (4). 
Therefore, it is expected that islands with 
different areas and thus different species 
colnpositions would contain different ec- 
osystem-level attributes (5). However, 
there have been few attempts at using 
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island-area gradients for evaluating pro
cesses and factors that operate at the eco
system-level of resolution (5). 

We selected an island archipelago in 
the northern boreal forest zone of Sweden, 
located within two adjacent lakes—Lake 
Hornavan and Lake Uddjaure (65°55'-
66°09'N; 17°43'-17°55'E). We chose 50 
islands, ranging in area from 0.02 to 15.0 
ha (and with these areas being distributed 
lognormally) which were formed on mo-
rainic deposits created by the retreat of 
land ice 9000 years ago. Our island system 
is ideal for testing hypotheses relating to 
island area effects because all the islands 
are of the same age and origin, and be
cause they have all been subjected to com
paratively minor human interference (6). 
The main disturbance regime on the is
lands is wildfire by lightning strike; light
ning (and therefore wildfire) appears to 
strike larger islands more frequently than 
smaller ones, presumably because they 
have a larger area to intercept. This is 
reflected in both the vegetation composi
tion (7) and fire history data (8) collected 
from each of these islands (Table 1). The 
vegetation data demonstrated that larger 
islands are dominated by earlier-succes-
sional plant species which dominate in the 
presence of regular wildfire, for example, 
Pinus sylvestris and Vactinium myrtillus, 
whereas smaller islands show a greater 
abundance of late successional species 
which occur in the prolonged absence of 
fire, for example Picea abies and Empetrum 
hermaphroditum (9). Further, evaluation of 
fire history with both fire-scar data and 
14C dating of charcoal particles in humus 
profiles reveals that the larger islands, in 
general, have burned much more recently 
than the smaller ones and have a greater 
fire frequency (Table 1). 

Those late successional plant species 
that dominate on the smaller islands typ
ically produce foliage and litter of poor 
quality with high levels of secondary me
tabolites, principally phenolics (10), and 
these compounds have the potential to 
reduce the ability of the soil microflora to 
decompose substrates and mineralize nu
trients (11). Measurements of soil chemi
cal and biological properties (12) were 
consistent with this—we found higher 
concentrations of water-soluble phenolics, 
reduced microbial biomass, and reduced 
microbial activity in the humus of the 
smaller islands (Fig. 1). This retardation of 
microbial activity was also reflected in a 
reduction of the rates of decomposition 
and N mineralization of V. myrdllus litter 
placed on the smaller islands (13). Fur
ther, the N concentration of both the 
humus and the added litter was highest on 
the smaller islands, suggesting that on 

these islands organic N becomes bound in 
protein-phenolic complexes, which are 
notoriously resistant to microbial attack 

(14). The inhibition of soil biotic process
es on the smaller islands probably contrib
utes to the substantial accumulation of 
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Fig. 2. Proportion of terrestrial C present in humus and plant pools in relation to island area. Total C 
values are mean ± SD. 
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huinus that occurs on them (Fig. 1);  the fore ecosystem function) and that this is 
smallest islands contain up to 10 times most likely attributable to plant species 
more humus per unit area than do the effects. 
largest ones. Therefore, our results demon- Carbon partitioning is clearly regulated 
strate that island area is critical in regu- by island area. With increasing island size, 
lating key ecological processes (and there- there is a distinct trend of an increasing 

proportion of organic C that is bound in 
living organisms, especially trees (Fig. 2) .  
Because smaller islands contain much high- 
er terrestrial C levels on an areal basis than 
do larger ones, our data indicates that wild- 
fire is of critical importance (either directly 
or indirectly) in reversing C lock-up in 
boreal forest ecosystems. This finding sug- 
gests that deliberate anthropogenic supres- 
sion of fires in boreal forests over the Dast 

Table 1. Vegetation and flre history characterlstlcs in relatlon to island area. Values presented are 
means i SE. 

century has the potential to lead to retar- 
dation of soil biological processes and sub- 
stantial terrestrial C sequestration (15), 
which is likely to be of global significance 
given the role of boreal forests in the global 
C cycle (1 6). 

There is evidence that N partitioning is 
also likely to be affected by island area. 
Although the humus N content was neg- 
atively related to island area, the N con- 
centrations of leaves of E ,  hermabhroditum. 

Area class 

Tree stem density jNO/ha) 
206 i 82 222 t 48 
1233 t 229 1707 1- 186 
278 i 87 211 ? 48 
1720 ? 198 2140 i 169 

Tree biomass (kg/m2) 
1.697 ? 0.627 2.627 i- 0.563 
0.844 ? 0.1 98 1.287 i- 0.21 1 
1.329 ? 0.323 1.462 t 0.289 
3.869 t 0.624 5.376 2 0.466 
Dwarf shrub biomass jkg/m2) 
0.069 i- 0.014 0.083 t 0.01 1 
0.1 64 ? 0.030 0.215 i- 0.021 
0.129 t 0.024 0.075 t 0.010 
0.365 i 0.022 0.383 t 0.021 
Biyophyte biomass (kg/m2) 
0.1 52 i 0.038 0.143 ? 0.030 
0.121 ? 0.021 0.061 i 0.016 
0.283 i- 0.033 0.21 7 t 0.027 

Additional parameters 
4.517 ? 0.616 5.977 i 0.455 

1.784 i 0.1 31 1.465 ? 0.065 

Pinus sylvestris 
Betula pubescens 
Picea abies 
Total 

Pinus sylvestris 
Betula pubescens 
Picea abies 
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shoots of the moss Pleurozium schreberi, 
and the soil microbial biomass were all 
positively related to island area (Fig. 3).  
This is indicative of enhanced acauisition Vaccinium myriillus 

Vaccinium vitis-idaea 
Empetrum hermaphroditum 
Total 

of N by these organisms, and means that 
the N Dresent in the humus of the smaller 
islands is clearly less available to living 
organisms than that of the larger islands. 
This again supports the concept that high- 
er levels of ~henolics on the smaller is- 

Pleurozium schreberi 
Hylocomium splendens 
Total 

lands contribute to reduced N availability. 
The lower plant tissue N content of plants 
on smaller islands would be expected to 
result in subsequently produced plant lit- 
ter with a lower C:N ratio, and thus, a 
reduced rate of decomposition (17), ulti- 
mately resulting in further organic matter 
accumulation. 

Island area studies have potential for 
investigation of relationships between spe- 
cies diversity and ecosystem-level proper- 
ties (5). In our study, plant species diver- 
sity was hiehest on the smallest islands 

Total vegetation blomass 
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Shannon-Welner specles 
dlverslty Index (H )' 

Number of flres In past 250 
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Age of charcoal In years 
('"C). 
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U 

 able l ) ,  Geaning that ecosystem process 
rates were lowest on those islands with the 
greatest diversity. This finding is in direct 
contrast to other studies which have 
shown elevated process rates in more di- 
verse communities 11 8). However, we 
found that the plant biomass of the larger 
islands was dominated bv a single earlv 
successional competitive 'tree spicies, P'. 
sylvestris, which has comparatively favor- 
able litter quality but which contributes to 
a reduced species diversity. The greater 
ecological stresses on the smaller islands 
(due to higher phenolics, lower pH, and 
reduced N availability) presumably pre- 

a statistically significant 
relationship with Island 
area. 

Soil micobial tissue Humus 

r = -0.386 
g** P = 0.006 

vented dominance by a single competitive 
species, resulting in a greater diversity 
(19), but with a greater abundance of 
those plant species with traits likely to 
contribute to retarding ecosystem-level 
processes. Other possible explanations for 

5.0 - 
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the discrepancy between our results and 
earlier investigations (18) are that we con
sidered the long-term effects of plant litter 
and belowground interactions on ecosys
tem properties, rather than the live-plant 
effects and productivity aspects that have 
characterized other studies (20); that pos
sible artifact associated with those studies 
claiming positive effects of species diver
sity on ecosystem processes has led to in
correct conclusions (21); and that long-
term feedbacks between plant species 
composition and ecosystem processes oc
curred in our study. Our results point to 
the utility of island archipelago studies in 
investigating relationships between biodi
versity and ecosystem function, and reveal 
that the nature of such relationships are 
ultimately dependent on the ecological 
attributes of each of the plant species 
present (22). 

Our study has demonstrated, through 
the assessment of a range of islands with 
differing plant communities, that species 
effects can be of critical importance in 
determining ecosystem properties, and we 
suggest that island archipelago studies pro
vide unique, and largely unrealized, oppor
tunities to test hypotheses relating to spe
cies effects in ecosystems. In using islands 
to address ecosystem-level questions, an 
obvious extension is to address relevant 
issues through experimentation rather 
than through the correlation-based ap
proaches that have characterized island 
biogeography research to date. Ultimately, 
island-area effects are far more wide-
reaching than simply influencing the 
structure of ecological communities; they 
are also important determinants of how 
the ecosystem itself functions. 
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