
eye disc (5) may thus be visualized as ex- 
panding concentric rings of dp-ERK. 

In accordance with the multiple func- 
tions of DER during development, many of 
the dp-ERK patterns are attributed to DER 
activation. The temporal and spatial corre- 
lation of DER-induced dp-ERK to Rho ex- 
pression stands out. The only exception is 
the activation of DER in the ventral ecto- 
derm at stage 10 that is induced by Spit;. 
processing machinery restricted to the mid- 
line. These findings point to Rho as the 
limiting element in activation of the DER 
pathway. Different ranges of diffusion were 
observed for Spitz in different biological 
contei'ts, highlighting the importance of 
molecules that may restrict or facilitate li- 
gand diffusion in regulating the spatial pat- 
tern of receptor activation. 
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Thermophilic Fe(lll)-Reducing Bacteria from the 
Deep Subsurface: The Evolutionary Implications 

Shi V. Liu," Jizhong Zhou, Chuanlun Zhang, David R. Cole, 
M. Gajdarziska-Josifovska, Tommy J. Phelpsi 

Thermophilic (45" to 75°C) bacteria that reduce amorphous Fe(lll)-oxyhydroxide to 
magnetic iron oxides have been discovered in two geologically and hydrologically 
isolated Cretaceous- and Triassic-age sedimentary basins in the deep (>860 meters 
below land surface) terrestrial subsurface. Molecular analyses based on 16s ribosomal 
RNA (rRNA) gene sequences revealed that some of these bacteria represent an 
unrecognized phylogenetic group of dissimilatory Fe(lll)-reducing bacteria. This dis- 
covery adds another dimension to the study of microbial Fe(lll) reduction and biogenic 
magnetism. It also provides examples for understanding the history of Fe(lII)-reducing 
microorganisms and for assessing possible roles of such microorganisms on hot 
primitive planets. 

Dissimilatory Fe(II1) reduction is proposed 
to be an early form of microbial respiration 
( I ) ,  and it may have influenced the 
geochemistry and the paleoinagnetisrn of 
the Archaean Earth (2).  Microbial Fe(II1) 
reduction has been observed primarily in 
lolv-temperature environments that have 
been extensively influenced by modern 
surface processes (3). Previous studies on 

dissimilatory Fe(II1)-reducing bacteria 
have been focused on inesophilic microor- 
ganisms within Proteobacteria (4), which 
are located distant from the deep branches 
on the phylogenetic tree (5).  The paucity 
of information on thermophilic dissimila- 
tory Fe(II1)-reducing microorgailisms (6)  
is striking in that thermophilic species are 
frequently found in many other groups of 
microorganisms such as methanogens, sul- 
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lineated in biological studies. 
We studied two geologically and hydro- 

logically separated sedimentary basins, the 
Triassic-age Taylorsville Basin in Virginia 
and the Cretaceous-age Piceance Basin in 
Colorado. Geological and hydrological stud- 
ies have shown that the deep portions of 
these basins have been isolated from surface 
processes for millions of years (9). The cur- 
rent temperature at the sampling depths 
(2652 to 2798 m below land surface) in the 
Taylorsville Basin ranges from 65" to 85"C, 
and the pore fluid pressure ranges from 30 to 
35 MPa (9). The current temperatures at the 
three sampling depths (856 to 862 m, 
1996 m, and 2090 to 2096 m below land 
surface) in the Piceance Basin were estimat- 
ed to be 42", 81°, and 85"C, respectively (9). 
Core samples were collected from tightly 
cemented, low-porosity arkosic silt stone and 
from organic-rich, laminated shale in the 
Triassic Taylorsville Basin, as well as from 
three geologic units in the Piceance Basin: 
one in the Tertiary Wasatch Formation and 
two in the Upper Cretaceous Williams Fork 
Formation (9). Drilling fluids were sampled 
from the fluid-receiving tank at different 
times during the drilling operation in the 
Piceance Basin. The sedimentary rock and 
drilling fluid samples were processed anaer- 
obically and shipped on ice overnight to our 
laboratory for initiation of microbial incuba- 
tions (1 0). 

Enrichment cultures for thermophilic 
Fe(II1)-reducing microorganisms were pre- 
pared with mineral media containing amor- 
phous Fe(II1) oxyhydroxide as an electron 
acceptor, and hydrogen (Hz) or short-chain 
fatty acids as the electron donors (10). 
Previous studies had shown that these sub- 
stances are potentially available in deep 
terrestrial subsurface environments ( I  1 ) 
and thus mav be suitable substrates for 
deep-subsurface Fe(II1)-reducing microor- 
ganisms. Within 1 to 2 weeks of inocula- 
tion with subsurface samples or enrich- 
ment cultures, black magnetic precipitates 
formed in incubation mixtures held at 
60°C (Table 1). The Taylorsville Basin 
enrichment cultures used the fattv acids 
formate, acetate, and lactate as electron 
donors for Fe(II1) reduction and magnetic 
mineral formation. The Piceance Basin 
enrichment cultures utilized H, and pyru- 
vate as electron donors in addition to the 
above three fatty acids. 

The formation of magnetic products 
was observed at temperatures between 45" 
and 75°C (Fig. 1) and at a salinity of 0 to 
4% NaC1. In various uninoculated con- 
trols, significant abiotic Fe(II1) reduction 
and magnetic product formation was not 
observed. Ex~osure of the thermo~hilic 
Fe(II1)-reducing enrichment cultures to 
oxygen prevented the Fe(II1) reduction, 

an indication of the anaerobic nature of 
the Fe(II1)-reducing microorganisms. Fur- 
thermore, the thermophilic formation of 
magnetic iron oxides was prevented by the 
ferric reductase inhibitor p-chloromercuri- 
phenyl sulfonate (pCMPS), the hydroge- 
nase inhibitor quinacrine dihydrochloride, 
the protonophore carbonyl cyanide m- 
chlorophenylhydrazone (CCCP), and the 
electron transport inhibitors 2-n-heptyl-4- 
hydroxyquinoline-N-oxide (HOQNO) 
and dicumarol. The susceptibility of the 
thermophilic Fe(II1)-reducing cultures to 
these metabolic inhibitors is consistent 
with a dissimilatory mechanism for Fe(II1) 
reduction, which has been shown for me- 

sophilic Fe(II1)-reducing bacteria (12). 
The sulfate reduction inhibitor molybdate 
did not stop the Fe(II1) reduction but 
shifted formation of reduced minerals from 
magnetite to siderite. 

Magnetic precipitates (10 to 300 nm in 
size) were deposited extracellularly in as- 
sociation with microorganisms of different 
morphologies (Fig. 2A). The magnetic 
minerals were identified as a mixture of 
magnetite and maghemite crystallites on 
the basis of the lattice spacings revealed 
by selected area electron diffraction (Fig. 
2B) and by high-resolution electron mi- 
croscopy. Magnetite was the predominant 
phase. The existence of these two forms of 

Table 1. Fe(lll)-reducing and magnetic iron oxide-forming activities at 60°C in materials obtained from 
deep terrestrial subsurface environments (27). 

Source of Activities with electron donor added into cultures* 

microorganisms Formate Acetate Lactate Pvruvate Hydrogen 

Taylorsville Basin, + + + - - 
sedimentary rocks 

Piceance Basin, + + + + + 
drilling fluids 

'The plus sign indicates that Fe(ll1) reduction and magnetic mineral formation were observed within 5 days of 
incubation. 

Fig. 1. Temperature profile of the microbial Fe(lll)- 
reducing activityof the H,-utilizing enrichment cul- 
tures from the Piceance Basin. After incubation for 
5 days at the indicated temperatures, brown non- 
magnetic amorphous Fe(lll) oxyhydroxides in the L3 J3 43 3V 55 60 65 70 75 83 
incubation tubes at 45" to 75°C became black 
and magnetic, and were attracted to the magnetic stirring bars taped to the outsides of incubation tubes 
during photographing. This caused the sloping of the precipitates toward the magnet side of the tube. 
Precipitates in incubation mixtures at 25", 35", and 83°C remained brown and nonmagnetic at the end 
of incubation. 

Fig. 2. Morphologies of bacteria and magnetic minerals and a 'selected area electron diffraction pattern 
of magnetic crystals in drilling fluid cultures from the Piceance Basin that were grown on H,-GO,-Fe(lll) 
oxyhydroxide at 60°C. (A) SEM image of samples prepared anaerobically with minimum disturbance 
(22). (6) Selected area electron diffraction pattern of magnetic crystals. The presence of magnetite 
(Fe30,) and maghemite (y-Fe,03) was indicated by black dots in the rings with characteristic d-spacings 
(23). 
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magnetic iron oxides in  the  magnetic 
precipitates was also confirmed by x-ray 
diffract1011 and Mossbauer spectroscopic 
analysis. 

T o  further characterize the  therrnophilic 
Fe(II1)-reducing e~ l r i chme~l t  cultures, we 
undertook a molecular analysis ( 1  3) of 1 6 s  
rRNA genes. Community DNAs were ex- 
tracted fro111 the  Fe(II1)-reducing enrich- 
ment  cultures i~lcubated with non-  
fermentable substrates ( H z  and acetate) and 
from those with a fermentable substrate 
(pyruvate). T h e  16s  rRNA genes were am- 
plified and c lo~led into plasmid vectors, and 
the  res<r ic t io~~ fragment length polymor- 
p l~ i sm (RFLP) patterns of the clones were 
analyzed (14).  Three d o ~ n i ~ l a ~ l t  RFLP pat- 
terns were observed in various enrichment 
cultures (Table 2). RFLP patterns 1 and 2 
were shared hy e ~ l r i c h m e ~ l t  cultures grown 
with ~ lonfe r~ne~ l t ab le  and ferme~ltable suh- 
strates, and the  two patterns accounted for 
43.6 to  54.696 of the  clones. RFLP pattern 3 
was observed in clo~les of Hz- and pyruvate- 
utilizing cultures hut no t  in the  acetate- 
utilizing culture. 

T h e  165 rRNA gelne sequences of repre- 
sentative c lo~les  beari~lg the three domi- 
nant  RFLP patterns were analyzed (1 5). All 
of the sequences were affiliated with Tilei-- 
moanaerobacter ~ I I  the  Gram-positive bacte- 
ria (Fig. 3 )  and (Table 2).  T h e  c lo~les  of 

RFLP patterns 1 and 3 were closely related 
to the The~~moa~zaerobactei- species, beari~lg 
-9896 silnilarity (Table 2).  T h e  clones of 
the RFLP pattern 2, ho~vever,  were lnost 
closely related to T. ethanol~czis hut had a 
1396 dissimilarity (Table 2) .  Such a degree 
of divergence in  the  16s  rRNA gene se- 
quences suggests that  the  clones with RFLP 
pattern 2 may represent a previously unrec- 
ognized genus or family of bacteria (1 6) .  

From the  analysis of the  RFLP patterns 
in  various cultures, we hypothesize tha t  
the  ~n ic roorga~ l i s~ns  directly respo~lsible 
for the  dissimilatory Fe(II1) reduction are 
those bearing RFLP pattern 2. This pat- 
tern was shared by Fe(II1)-reducing micro- 
bial populatio~ls grom7n ~ I I  three dif- 
ferent electron donors. RFLP pattern 1 
was also colnmoIl to e ~ l r i c h r n e ~ l t  c u l t ~ ~ r e s  
grown o n  all three substrates. However, 
isolated bacteria such as TOR-39  ( 6 )  
\\,hose 1 6 s  r R N A  sequences are highly 
similar t o  pattern 1 clones were unable 
to  catalyze ~ lo l l f e r~ne~ l t a t ive  dissimilatory 
Fe(II1) reduction. Bacteria hearing t h e  
RFLP pattern 3 might play some role in  
the  Fe(II1)-reduction in  the  hydrogen- 
and  pyruvate-grom7n cultures. However, 
bacteria with this RFLP pattern are UII- 
liltely candidates for producing the  ob- 
served dissimilatory Fe(II1) reduction; this 
RFLP pattern was absent from acetate- 

Table 2. The dominant RFLP patterns and 16s  rRNA gene sequence similarity of the 16s  rDNA clones 
in thermophllic Fe(l1)-reducng enrchment cultures grown '!vith different electron donors. The numbers 
in parentheses are percentages of the total clones 

Representative clones In cultures wlth different 
Dom~nant 

RFLP 
electron donors ~ o s t  slrn~lar s ~ ~ ~ l ~ ~  

specles 
patterns 

Hydrogen Acetate Pyruvate 
(35) 

1 H-2 (30.8) A-3 (37.1) P-9 (24.3) T. ethanolicus 97.9 
2 H-3 (1 9.0) A-1 0 (1 9.01 P-3 (1 9.3) T. ethanolicus 86.7 
3 H-5 (14.3) N D* P-1 (20.7) T. brockii 97.7 

"ND = not deiected 

Fig. 3. The phylogenet- Desuifuromonas acetoxidans 

IC relation between the 
newly discovered thermo- Shewanella alga 

philic Fe(Il1)-reducing bac- S.putrefaciens B, subtii~s 
teria (bold Roman letters 

E, coli 
Bacillus infernus 

connected with a th~ck 
line) and other examples of 
Fe(lll)-reduclng bacterla 
(itallc letters connected 
with thck Ines). This rela- 
t o n  is deduced from 16s  

Thermoterrabacterium 
ferrireducens 

rRNA gene sequencesof Thermoanaerobacter ethanolicus 
the bactera. The letters H, Arnrnonifex degensii 

A, and P ind~cate the / k ~ - 2 ,  A-3, P-9 

hydrogen-, acetate-, and 
pyruvate-utlizng cultures, 
respectively. The numbers 
after the hyphens speclv the clones (Table 2). The scale bar represents 0.05 nuceotde change per 
postion. 

grown cultures and the  clones with this 
pattern were highly similar in  1 6 s  r R N A  
gene sequences to  those of fermentative 
Thermoanaerobacter species. However, fur- 
ther studies are necessarv to  delineate t h e  
respective roles of the  various bacteria in  
t h e r m o ~ h i l i c  FelIII) reduction. 

~he 'd i scover i ;  of these forms of ther- 
mophilic Fe(II1)-reducing bacteria de- 
scribed above has broad ilnplicatio~ls re- 
garding the  evolution of Fe(II1)-reducing 
microorgallisms and  biogenic contribu- 
tions to  paleonlagnetism. A wide phyloge- 
netic distribution of Fe(II1)-reducing bac- 
teria, including mesophilic and thermo- 
philic species, could reflect the  early evo- 
lution of Fe(II1) respiration hecause early 
evolved characteristics tend to  be con- 
served among widely distributed descen- 
dants ( 1  7). Furthermore, the  existence of 
therlnophilic Fe(II1)-reduci~lg bacteria in  
geologically isolated, millions-of-years-old 
thermal regimes suggests tha t  thermophily 
may be a n  ancestral feature associated 
with Fe(II1)-reduction. T h e  ability of mi- 
croorganisms to produce magnetic iron ox- 
ides from amorphous Fe(II1) oxyhydroxide 
a t  high temperatures expands the  hiotope 
boundary for microbial Fe(II1)-reducing 
activities. This  capability also supports the  
theory tha t  biogenic lnagnetisrn may have 
occurred in  Archaean banded iron forma- 
tions that  formed at  high temperatures 
(55' to  76OC) (18) .  

T h e  discovery of therrnophilic Fe(II1)- 
r e d u c ~ ~ l g  bacteria o n  Earth may also have 
implications for studying exobiology on ,  
for example, hllars: the  recent finding of 
putative biogenic magnetite in  a n  ancient 
martian meteorite ( 1  9)  raises the  possibil- 
ity that  Fe(II1)-reducing microorganisms 
e ~ ~ o l v e d  not  only o n  Earth but also else- 
where. Early Mars and early Earth might 
have exhibited similar hydrothermal ac- 
tivities compatible with life (20). Thus,  
thermophily may have been a comllloll 
feature of the  early evolved forms of 
Fe(II1)-reducing bacteria. 
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Altered Neural Cell Fates and Medulloblastorna 
in Mouse patched Mutants 

Lisa V. Goodrich, Ljiljana Milenkovic, Kay M. Higgins, 
Matthew P. Scott* 

The PATCHED (PTC) gene encodes a Sonic hedgehog (Shh) receptor and a tumor 
suppressor protein that is defective in basal cell nevus syndrome (BCNS). Functions of 
PTC were investigated by inactivating the mouse gene. Mice homozygous for the ptc 
mutation died during embryogenesis and were found to have open and overgrown neural 
tubes. Two Shh target genes, ptc itself and Gli, were derepressed in the ectoderm and 
mesoderm but not in the endoderm. Shh targets that are, under normal conditions, 
transcribed ventrally were aberrantly expressed in dorsal and lateral neural tube cells. 
Thus Ptc appears to be essential for repression of genes that are locally activated by Shh. 
Mice heterozygous for the ptc mutation were larger than normal, and a subset of them 
developed hindlimb defects or cerebellar medulloblastomas, abnormalities also seen in 
BCNS patients. 

T h e  human PTC gene is a tumor suppres- 
sor and develop~nental regulator (1). 
Some patients with BCNS have germline 
mutations in PTC and are at increased 
risk for developmental defects such as 
spina bifida and craniofacial abnormali- 
ties, basal cell carcinoma of the skin, and 
brain tumors (2). PTC mutations also oc- 
cur in sporadic basal cell carcinomas ( 1  ), 
which generally have both copies of PTC 
inactivated. 

In the fruit fly Drosophila, Ptc is a key 
component of the Hedgehog (Hh) signaling 
pathway, which controls cell fate determi- 
nation during development (3). Hh pro- 
tein, secreted from localized regions, antag- 
onizes the actions of its apparent receptor, 
Ptc, in nearby cells (4). In the absence of a 
Hh signal, Ptc represses transcription of 
multiple target genes, including ptc itself, 
ulingless (a W n t  gene), and the transforming 
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growth factor P-related gene decapentaplegic. 
In flies, ptc mutations cause derepression of 
target genes, cell fate changes, and exces- 
sive growth in some tissues (5). Hh induces 
a high level of ptc transcription by inhibit- 
ing the function of Ptc protein, so paradox- 
ically an abundance of ptc transcript is an 
indicator of a low level of Ptc function. 
Vertebrate ptc expression is also regulated 
by Hh proteins (6), which can bind directly 
to Ptc (7) 

The role of the Hh-Ptc pathway in skin 
cancer has been established bv BCNS 
studies and with a mouse model' (8), but 
less is known about the brain tumors as- 
sociated with BCNS. About 3% of BCNS 
patients develop inedulloblastomas (9) ,  
cerebellar tumors that usually arise in 
young children and have a inortality rate 
of -5056 (10). ptc mutations have been 
detected in sporadic medulloblastomas 
( I  1 ), but this tumor type is rare and there 
are few clear animal models ( 1  21, so much 
remains to be learned about its origins and 
biology. 

To study the roles of ptc in development 
and in tumorigenesis, we constructed mice 
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