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An NGF-TrkA-Mediated Retrograde Signal to
Transcription Factor CREB in
Sympathetic Neurons
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David D. Gintyt

Nerve growth factor (NGF) is a neurotrophic factor secreted by cells that are the targets
of innervation of sympathetic and some sensory neurons. However, the mechanism by
which the NGF signal is propagated from the axon terminal to the cell body, which can
be mcre than 1 meter away, to influence biochemical events critical for growth and
survival of neurons has remained unclear. An NGF-mediated signal transmitted from the
terminals and distal axons of cultured rat sympathetic neurons to their nuclei regulated
phosphorylation of the transcription factor CREB (cyclic adenosine monophosphate
response element-binding protein). Internalization of NGF and its receptor tyrosine
kinase TrkA, and their transport to the cell body, were required for transmission of this
signal. The tyrosine kinase activity of TrkA was required to maintain it in an autophos-
phoryiated state upon its arrival in the cell body and for propagation of the signal to CREB
within neuronal nuclei. Thus, an NGF-TrkA complex is a messenger that delivers the NGF
signal from axon terminals to cell bodies of sympathetic neurons.

The growth and survival of many popula-
tions of neurons depends on trophic support
provided by their target tissue (1). NGF is
secreted by targets of sympathetic and some
sensory neurons, and it is also expressed
within discrete regions of the central ner-
vous system (I, 2). NGF belongs to a family
of structurally related neurotrophic factors
termed neurotrophins; this family includes
brain-derived neurotrophic factor (BDNF),
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neurotrophin 3 (NT-3), and neurotrophin
4/5 (N'T-4/5) (2). Two cell surface receptors
for NGF have been identified: a receptor
tyrosine kinase, TrkA, and the low-affinity
neurotrophin receptor, p75~ TR, NGF exerts
its growth- and survival-promoting effects
on neurons through activation of TrkA and
subsequent biochemical events that ulti-
mately influence the expression of vari-
ous genes, including those encoding ion
channels, neurotransmitter-synthesizing en-
zymes, and cytoskeletal components (3).
NGEF stimulates dimerization and auto-
phosphorylation of TrkA and initiation of
intracellular signaling cascades that propa-
gate the signal to the nucleus (4). One
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transcription factor that is a key target of an’
NGF-stimulated signaling pathway is CREB
(5). Upon exposure of pheochromocytoma-
derived cell line PC12 to NGF, CREB be-
comes phosphorylated on its transcriptional
regulatory site Ser'>* (5), and this phospho-
rylation event promotes NGF activation of
transcription of the immediate early gene
c-fos. Because many NGF-regulated imme-
diate early genes and delayed-response
genes contain CREB binding sites within
their upstream regulatory regions (5),
CREB is likely to be a mediator of the
general nuclear response to neurotrophins.

Because NGF is internalized and retro-
gradely transported from the axon terminal
to the cell body (6), NGF itself may carry
signals from the axon terminal to the nu-
cleus. Alternatively, TrkA or p75NTR, an
NGF-receptor complex, or a terminally de-
rived second messenger molecule might
serve as a retrograde messenger (7). To
address questions of retrograde NGF signal-
ing, we used compartmentalized cultures of
sympathetic neurons (8) and antibodies
that distinguish between the Ser'**-phos-
phorylated and unphosphorylated states of
CREB (anti—P-CREB) (9) and TrkA (anti—
P-Trk) (Fig. 1A). In these cultures, the cell
bodies are separated from the axon terminals
and distal processes by a distance of either 1
mm or 3 to 4 mm, and the cell bodies and
distal processes are located in separate fluid
compartments {Fig. 1B). This system enables
us to expose isolated terminals and distal
axonal processes to NGF and then to assess
by immunocytochemistry the phosphoryl-
ation state of CREB Ser'*? and TrkA in cell
bodies.

To determine whether NGF induces
phosphorylation of CREB Ser'*? in sympa-
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thetic neurons, we incubated neurons
grown in compartmentalized cultures with
medium containing a low concentration of
NGF (2 ng/ml) for 48 hours. We then
exposed either the cell bodies or distal ax-
onal processes to medium containing a high
concentration of NGF (200. ng/ml) for var-
ious times before fixation and anti-P-CREB
immunocytochemistry (10). Exposure of ei-
ther cell bodies or axon terminals and distal
processes to NGF induced phosphorylation
of CREB Ser!?? within the nuclei of sym-
pathetic neurons (Fig. 1C). Moreover, cell
bodies and axon terminals were equally sen-
sitive to NGF (Fig. 1D). However, the ki-
netics of this NGF-sensitive phosphoryl-
ation event differed depending on the site
of NGF application or the distance between
the cell bodies and the distal processes (Fig.
1E). Application of NGF directly to the cell
bodies resulted in phosphorylation of CREB
Ser!?? within 5 min that returned to the
basal level within 40 min. In contrast, up-
on application of NGF to terminals and
distal processes of neurons whose cell
bodies were located in center compartments
1 mm away, anti-P-CREB immunoreactiv-
ity peaked at 20 min and persisted for at
least 1 hour. Furthermore, application of
NGEF to axon terminals and distal processes
at least 3 mm away from the cell bodies
resulted in appearance of nuclear P-CREB
immunoreactivity that was first detected
within 40 min, (Fig. 1E). These results in-
dicate that the messenger that transmits the
NGEF signal from distal axonal processes to
CREB within the nucleus travels at a rate of
approximately 2 to 4 mm/hour. %I-labeled
NGF is retrogradely transported at an
equivalent rate (6) or a slightly faster rate in
sympathetic neurons (11).

To determine whether internalization
and retrograde transport of NGF are re-
quired for retrograde signaling to CREB
within the nucleus, we prepared NGF that
was covalently coupled to 1 pm—diameter
microspheres (12). The NGF-coupled
beads, but not control beads (12), induced
autophosphorylation of TrkA (Fig. 2A)
(13) and activation of the Ras-dependent
protein kinase MAPK (mitogen-activated
protein kinase) in PC12 cells and in sym-
pathetic neurons (14). The NGF-coupled
beads were not internalized by axon termi-
nals and distal processes of sympathetic
neurons, nor were they transported to cell
bodies (14). Therefore, we used the NGF-
coupled beads to determine whether activa-
tion of TrkA in terminals was sufficient for
signaling to the cell body, or whether inter-
nalization and retrograde transport of NGF
were also required.

Upon exposure of cell bodies of sympa-
thetic neurons to either soluble NGF or
NGF-coupled beads, phosphorylation of
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Fig. 1. Phosphorylation of CREB Ser'*? after application
of NGF to axon terminals and distal processes of sympa-
thetic neurons. (A) Protein immunoblot of extracts of
sympathetic neurons. Sympathetic neurons were incu- ’ y - -
bated for 15 min with or without NGF (200 ng/ml) (CTR, 50 100 150 200

control). Whole cell lysates were prepared and protein
immunoblot analysis was done with anti-P-CREB (9),
anti-P-Trk (76), or anti-tyrosine hydroxylase ( TH). CREB
is 43 kD, TrkA is 140 kD, and TH is 58 kD. The lower
migrating band detected in the P-Trk blot may be a pro-
teolytic fragment of TrkA. (B) Schematic representation of
compartmentalized cultures of sympathetic neurons. In
center-plated chambers, axons of sympathetic neurons
project beneath a Teflon divider that is at least 1 mm
wide, whereas in side-plated chambers, the distance be-
tween axon terminals and distal processes and the cell
bodies is at least 3 mm. (C) Phosphorylation of CREB
Ser'33 within nuclei of sympathetic neurons after applica-
tion of NGF to axon terminals and distal processes. Axon
terminals and distal processes of sympathetic neurons

P-CREB immunoreactivity (%)

1004

E

NGF concentration (ng/ml)

20 30 40
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grown in center-plated chambers were incubated in medium with or without NGF (200 ng/ml) for 20 min.
Immunocytochemistry was done with anti-P-CREB, which recognizes CREB that is phosphorylated on
Ser33 but not CREB that is unphosphorylated on this residue (9). The percentage of neurons that had
nuclei stained with anti-P-CREB was determined by two individuals in blind analyses. Scale bar, 50 pm.
(D) Dose-response analysis of NGF induction of CREB phosphorylation. Cell bodies (squares) or axon
terminals and distal processes (circles) were treated with the indicated concentrations of NGF for 10 min
(cell bodies) or 20 min (axon terminals and distal processes). Cells were then fixed and anti-P-CREB
immunocytochemistry was performed. Values are means + SEM of three independent experiments. (E)
Kinetics of NGF induction of phosphorylation of CREB Ser'2® in sympathetic neurons. Cell bodies of
neurons grown in center-plated chambers (squares), terminals and distal axons of neurons grown in
center-plated chambers (circles), or terminals and distal axons of neurons grown in side-plated cham-
bers (triangles) were treated with NGF (200 ng/ml) for the indicated times, and then cells were fixed for
immunocytochemistry with anti-P-CREB. Values are means + SEM of three independent experiments

performed in duplicate.

CREB Ser!?? was detected in nuclei of near-
ly 80% of the neurons; this result was not
seen with control beads (Fig. 2B). In con-
trast, NGF-coupled beads failed to stimulate
CREB phosphorylation when applied to
axon terminals and distal processes of sym-
pathetic neurons (Fig. 2B). However, in
parallel cultures, soluble NGF stimulated
CREB phosphorylation in nearly 80% of
neurons when applied to axon terminals.
Thus, although internalization of NGF is
not necessary for propagation of the NGF
signal from the plasma membrane of the
cell body to the nucleus, internalization and
retrograde transport of NGF are critical for
propagation of the NGF signal from the
axon terminal and distal process to the
nucleus. These results support a model in

which NGEF itself is a critical component of
the retrograde signaling complex.

The possibility that NGF is retrogradely
transported to the cell body of sympathetic
neurons as part of a complex with one of its
receptors, TrkA, is supported by the obser-
vation that NGF remains associated with
tyrosine-phosphorylated TtkA in internal-
ized vesicles purified from NGF-treated
PC12 cells (15). We therefore tested
whether exposure of terminals of sympa-
thetic neurons to soluble NGF resulted in
retrograde transport of autophosphorylated
TrkA receptors. Appearance of tyrosine-
phosphorylated TrkA (P-Trk) in cell bodies
was determined by immunocytochemistry
with antibodies that recognize TrkA only
when it is phosphorylated on two tyrosine
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Fig. 2. Internalization A
and retrograde transport
of NGF are critical for
retrograde signaling to
CREB. (A) Phospho-
rylation of TrkA induced
by NGF-coupled beads,
but not control (CTR)
beads, in PC12 cells.
PC12 cells were treated
with control medium,
control beads (4 pl/mi),
NGF (100 ng/ml), or

CTR beads
Soluble NGF
NGF beads

CTR

200-|

97~

kD

NGF-coupled beads (4 wl/ml) for 10 min (72). Then, TrkA was
immunoprecipitated using anti-panTrk (73, 22) and immunoblot-
ted with anti-phosphotyrosine as described (22). (B) Internaliza-
tion and retrograde transport of NGF are required for phospho-
rylation of CREB Ser'#2, Axon terminals and distal processes of
sympathetic neurons grown in center-plated chambers were

80-
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40-

20-

P-CREB immunoreactivity (%)

NGF (terminals)

NGF (cell bodies)

NGF beads (terminals)
NGF beads (cell bodies)
CTR beads (terminals)
CTR beads (cell bodies)

treated with control medium, soluble NGF (200 ng/ml), NGF-

coupled beads (4 wl/ml), or control beads for 20 min. Alternatively, cell bodies of neurons grown in
center-plated chambers were treated with the same stimuli for 10 min. Cells were then fixed for
immunocytochemistry with anti-P-CREB. Values are means += SEM of three independent experiments

performed in duplicate.

Fig. 3. Appearance of ty- Cell bodies

Distal processes

rosine-phosphorylated TrkA
in distal processes and cell
bodies after application of
NGF to axon terminals and
distal processes. Axon ter-
minals and distal processes
of neurons grown in center-

Control

plated chambers were un-
treated (control) or were

treated with NGF (200 ng/
ml) for 20 min. In the lower
panels, the cell bodies were
first treated with K-252a
(100 nM, 30 min) and the
terminals were then treated
with NGF. Cells were fixed

NGF
(terminals)

for  immunocytochemistry

with anti-P-Trk (Fig. 1A) (16).
This experiment- was per-
formed three times with sim-
ilar results. Incubation of an-
ti-P-Trk with the phosphoty-
rosine-containing Trk pep-
tide used to generate the

NGF
(terminals)
K-252a
(cell bodies)

antibody, but not control

peptides, abolished P-Trk immunoreactivity (74). Scale bar, 50 pm.

residues, Tyr®”* and Tyr®”® (Fig. 1A) (16).
Upon exposure of axon terminals and distal
processes to NGF, the amount of P-Trk
immunoreactivity was increased in the dis-
tal processes and also in cell bodies (Fig. 3),
which suggests that P-Trk, like NGF, is
retrogradely transported in sympathetic
neurons. This conclusion is consistent with
the observation that P-TrkA accumulates
on the distal side of a ligation (17) or crush
(18) of the sciatic nerve. Because NGF and
TrkA remain associated within internalized
vesicles (15), these results support a model
in which NGF maintains cotransported
TrkA in an active state.
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To test this idea, we used a potent and
selective inhibitor of Trk protein kinase
activity, K-252a (19, 20). Application of
K-252a to cell bodies prevented the appear-
ance of P-Trk in cell bodies after exposure
of axon terminals and distal processes to
NGF (Fig. 3). In contrast, application of
K-252a to cell bodies did not block NGF-
induced accumulation of P-Trk immunore-
activity in distal axons and terminals. Thus,
tyrosine kinase activity of retrogradely
transported TrkA is critical for maintaining
the receptor in an autophosphorylated state
upon its arrival in the cell body.

We next tested the possibility that ret-
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Fig. 4. Requirement of tyrosine kinase activity of
retrogradely transported TrkA for propagation of
the retrograde signal to CREB. Sympathetic neu-
rons grown in center-plated chambers were un-
treated, or either cell bodies or axon terminals and
distal processes were exposed to K-252a (100
nM, 30 min). Then, NGF was applied to axon ter-
minals and distal processes or cell bodies, and
P-CREB immunocytochemistry was done with
anti-P-CREB. Values are means * SEM of three
independent experiments performed in duplicate.

rogradely transported, catalytically active
TrkA contributes to retrograde signaling
to the nucleus. For these experiments, we
assessed the ability of terminally applied
NGF to induce CREB phosphorylation in
neurons in which we inhibited TrkA ki-
nase activity in cell bodies but not in axon
terminals and distal processes. When ap-
plied to cell bodies, K-252a blocked phos-
phorylation of CREB Ser!*? in response to
application of NGF to axon terminals and
distal processes (Fig. 4). In contrast, K-
252a treatment of axon terminals and dis-
tal processes did not block phosphoryl-
ation of CREB Ser!*? in response to appli-
cation of NGF directly to the cell bodies.
We conclude that retrogradely transport-
ed, catalytically active TrkA and its li-
gand, NGF, are components of a complex
that conveys the NGF signal from the
axon terminals to CREB within the nuclei
of sympathetic neurons.
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Hypermethylated SUPERMAN Epigenetic
Alleles in Arabidopsis

Steven E. Jacobsen and Elliot M. Meyerowitz*

Mutations in the SUPERMAN gene affect flower development in Arabidopsis. Seven
heritable but unstable sup epi-alleles (the clark kent alleles) are associated with nearly
identical patterns of excess cytosine methylation within the SUP gene and a decreased
level of SUP RNA. Revertants of these alleles are largely demethylated at the SUP locus
and have restored levels of SUP RNA. Atransgenic Arabidopsis line carrying an antisense
methyltransferase gene, which shows an overall decrease in genomic cytosine meth-
ylation, also contains a hypermethylated sup allele. Thus, disruption of methylation
systems may yield more complex outcomes than expected and can result in methylation
defects at known genes. The ciark kent alleles differ from the antisense line because they
do not show a general decrease in genomic methylation.

Dna methylation is emerging as an im-
portant component of cell memory, the pro-
cess by which dividing cells inherit states of
gene activity. In mammals, methylation ap-
pears to play a key role in processes such as
genomic imprinting and X-chromosome in-
activation, and in plants methylation is cor-
related with a number of phenomena, in-
cluding silencing of duplicated regions of
the genome (1).

Arabidopsis mutants at the DDMI and
DDM2 loci have a reduced overall level of
cytosine methylation and display a number
of developmental defects (2). Transgenic
Arabidopsis plants expressing an antisense
cytosine methyltransferase RNA also ex-
hibit abnormalities including a number of
floral defects resembling the phenotypes of
known floral homeotic mutants (3, 4).
These experiments suggest a direct cause
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and effect relation between DNA methyl-
ation and proper regulation of developmen-
tally important genes. We describe here a
class of epi-mutations in Arabidopsis that
appear to be caused by overmethylation of
the flower development gene SUPERMAN
(SUP).

Seven independent mutants were iden-
tified [clark kent (clk) 1 through 7] with
phenotypes similar to but weaker than that
of the known sup mutants (5, 6). Wild-type
Arabidopsis flowers (Fig. 1A) contain six
stamens (the male reproductive organs) and
two central carpels that fuse to form the
female reproductive structure. The sup-5
allele (Fig. 1B) (7), which contains a nearly
complete deletion of the SUP gene (8),
produces an increased number of stamens
[12.3 £ 0.3 (mean = SE)| and carpels
(2.9 = 0.1) on the first 10 flowers produced
on the plant. The clk-3 allele (Fig. 1C) has
an average of 7.8 * 0.3 stamens and 3.4 =
0.1 carpels, whereas the weaker clk-1 allele
has an average of 6.4 * 0.1 stamens and
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