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An NGF-TrkA-Mediated Retrograde Signal to 
Transcription Factor CREB in 

sympathetic Neurons 
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Nerve growth factor (NGF) is a neurotrophic factor secreted by cells that are the targets 
of innervation of sympathetic and some sensory neurons. However, the mechanism by 
which the NGF signal is propagated from the axon terminal to the cell body, which can 
be more than 1 meter away, to influence biochemical events critical for growth and 
survival of neurons has remained unclear. An NGF-mediated signal transmitted from the 
terminals and distal axons of cultured rat sympathetic neurons to their nuclei regulated 
phosphorylation of the transcription factor CREB (cyclic adenosine monophosphate 
response element-binding protein), Internalization of NGF and its receptor tyrosine 
kinase TrkA, and their transport to the cell body, were required for transmission of this 
signal. The tyrosine kinase activity of TrkA was required to maintain it in an autophos- 
phorylated state upon its arrival in the cell body and for propagation of the signal to CREB 
within neuronal nuclei. Thus, an NGF-TrkA complex is a messenger that delivers the NGF 
signal from axon terminals to cell bodies of sympathetic neurons. 

T h e  growth and survival of many popula- 
tions of neurons depends on trophic support 
provided by their target tissue (1). NGF is 
secreted by targets of sympathetic and some 
sensory neurons, and it is also expressed 
within discrete regions of the central ner- 
vous system (1, 2 ) .  NGF belongs to a family 
of structurally related neurotrophic factors 
termed neurotrophins; this family includes 
brain-derived neurotrophic factor (BDNF), 
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neurotrophin 3 (NT-3), and neurotrophin 
415 (NT-415) (2) .  TWO cell surface receptors 
for NGF have been identified: a receotor 
tyrosine kinase, TrkA, and the low-affinity 
neurotrophin receptor, p7iNTR. NGF exerts 
its growth- and survival-promoting effects 
on neurons through activation of TrkA and - 
subsequent biochemical events that ulti- 
mately influence the exoression of vari- 
ous genes, including those encoding ion 
channels, neurotransmitter-synthesizing en- 
zymes, and cytoskeletal components (3). 

NGF stimulates dimerization and auto- 
phosphorylation of TrkA and initiation of 
intracellular signaling cascades that propa- 
gate the signal to the nucleus (4), One 
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transcription factor that is a key target of an 
NGF-stimulated signaling pathway is CREB 
(5). Upon exposure of pl~eocl~romocytoma- 
derived cell line PC12 to NGF, CREB be- 
coines phospl~or~lated on its transcriptional 
regulatory site Ser133 (5), and this phospho- 
rylation event promotes NGF activation of 
transcription of the imnlediate early gene 
c-fos. Because many NGF-regulated imme- 
diate early genes and delayed-response 
genes contain CREB binding sites within 
their upstream regulatory regions (5), 
CREB is likely to be a mediator of the 
general nuclear response to neurotrophins. 

Because NGF is internalized and retro- 
gradely transported from the axon terminal 
to the cell body (6), NGF itself inay carry 
signals from the axon terminal to the nu- 
cleus, Alternatively, TrkA or p7iNTR, an 
NGF-receptor complex, or a terminally de- 
rived second messenger inolecule might 
serve as a retrograde messenger (7). To 
address questions of retrograde NGF signal- 
ing. we used comoartmentalized cultures of 

u 

sympathetic neurons (8) and antibodies 
that distinguish between the Ser133-ohos- - 
phorylated and unphosphorylated states of 
CREB (anti-P-CREB) (9)  and Trk4  (anti- 
P-Trk) (Fig. 14). In these cultures, the cell 
bodies are se~arated fro111 the axon ternlinals 
and distal processes by a distance of either 1 
mln or 3 to 4 mm, and the cell bodies and 
distal processes are located in separate fluid 
compartments (Fig. 1B). This system enables 
us to expose isolated terminals and distal 
axonal Drocesses to NGF and then to assess 
by immunocytochemistry the phosphoryl- 
ation state of CREB Ser133 and TrkA in cell 
bodies. 

To determine whether NGF induces 
phosphorylation of CREB Ser133 in sympa- 
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thetic neurons, we incubated neurons 
grown in compartmentalized cultures with 
medium containing a low concentration of 
NGF (2 ng/ml) for 48 hours. We then 
exposed either the cell bodies or distal ax- 
onal processes to medium containing a high 
concentration of NGF (200 ng/ml) for var- 
ious times before fixation and anti-P-CREB 
immunocytochemistry ( 10). Exposure of ei- 
ther cell bodies or axon terminals and distal 
processes to NGF induced phosphorylation 
of CREB Ser'33 within the nuclei of sym- 
pathetic neurons (Fig. 1C). Moreover, cell 
bodies and axon terminals were equally sen- 
sitive to NGF (Fig. ID). However, the ki- 
netics of this NGF-sensitive phosphoryl- 
ation event differed depending on the site 
of NGF application or the distance between 
the cell bodies and the distal processes (Fig. 
1E). Application of NGF directly to the cell 
bodies resulted in phosphorylation of CREB 
Ser133 within 5 min that returned to the 
basal level within 40 min. In contrast, up- 
on application of NGF to terminals and 
distal processes of neurons whose cell 
bodies were located in center compartments 
1 mm away, anti-P-CREB immunoreactiv- 
ity peaked at 20 min and persisted for at 
least 1 hour. Furthermore, application of 
NGF to axon terminals and distal processes 
at least 3 mm away from the cell bodies 
resulted in appearance of nuclear P-CREB 
immunoreactivity that was first detected 
within 40 min. (Fig. 1E). These results in- 
dicate that the messenger that transmits the 
NGF signal from distal axonal processes to 
CREB within the nucleus travels at a rate of 
approximately 2 to 4 mmlhour. 1251-labeled 
NGF is retrogradely transported at an 
equivalent rate (6) or a slightly faster rate in 
sympathetic neurons (1 1 ). 

To determine whether internalization 
and retrograde transport of NGF are re- 
quired for retrograde signaling to CREB 
within the nucleus, we prepared NGF that 
was covalently coupled to 1 pm-diameter 
microspheres (1 2). The NGF-coupled 
beads, but not control beads (12), induced 
autophosphorylation of TrkA (Fig. 2A) 
(13) and activation of the Ras-dependent 
protein kinase MAPK (mitogen-activated 
protein kinase) in PC12 cells and in sym- 
pathetic neurons (14). The NGF-coupled 
beads were not internalized by axon termi- 
nals and distal processes of sympathetic 
neurons, nor were they transported to cell 
bodies (14). Therefore, we used the NGF- 
coupled beads to determine whether activa- 
tion of TrkA in terminals was sufficient for 
signaling to the cell body, or whether inter- 
nalization and retrograde transport of NGF 
were also required. 

Upon exposure of cell bodies of sympa- 
thetic neurons to either soluble NGF or 
NGF-coupled beads, phosphorylation of 
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Fig. 1. rnospnorylation of CREB Ser'33 after applicat~on 
of NGF to axon terminals and distal processes of sympa- E 20 
thetic neurons. (A) Protein immunoblot of extracts of 2 
sympathetic neurons. Sympathetic neurons were incu- 0 

control). Whole cell lysates were prepared and protein 

. . 
bated for 15 min with or without NGF (200 ng/rnl) (CTR, 0 ~ U J  150 260 

NGF concentration (nglml) 

immunoblot analysis was done with anti-P-CREB (9). E 
anti-P-Trk (16), or anti-tyrosine hydroxylase (TH). CREB 
is 43 kD, TrkA is 140 kD, and TH is 58 kD. The lower 80- 
migrating band detected in the P-Trk blot may be a pro- Y teolyticfragment of TrkA. (B) Schematic representation of 
compartmentalized cultures of sympathetic neurons. In 
center-plated chambers, axons of sympathetic neurons 
project beneath a Teflon divider that is at least 1 mm 
wide, whereas in side-plated chambers, the distance be- 
tween axon terminals and distal processes and the cell 
bodies is at least 3 mrn. (C) Phosphorylation of CREB 
SeriZ3 within nuclei of sympathetic neurons after applica- 
tion of NGF to axon terminals and distal processss. Axon Time (min) 
terminals and distal processes of sympathetic neurons 
grown in center-plated chambers were incubated in medium with or without NGF (200 ng/ml) for 20 min. 
lmmunocytochemistry was done with anti-P-CREB, which recognizes CREB that is phosphorylated on 
Ser1= but not CREB that is unphosphorylated on this residue (9). The percentage of neurons that had 
nuclei stained with anti-P-CREB was determined by two individuals in blind analyses. Scale bar, 50 pm. 
(D) Dose-response analysis of NGF induction of CREB phosphorylation. Cell bodies (squares) or axon 
terminals and distal processes (circles) were treated with the indicated concentrations of NGF for 10 rnin 
(cell bodies) or 20 min (axon terminals and distal processes). Cells were then fixed and anti-P-CREB 
immunocytochemistry was performed. Values are means -c SEM of three independent experiments. (E) 
Kinetics of NGF induction of phosphorylation of CREB Ser'33 in sympathetic neurons. Cell bodies of 
neurons grown in center-plated chambers (squares), terminals and distal axons of neurons grown in 
center-plated chambers (circles), or terminals and distal axons of neurons grown in side-plated cham- 
bers (triangles) were treated with NGF (200 ng/ml) for the indicated times, and then cells were fixed for 
immunocytochemistry with anti-P-CREB. Values are means -t SEM of three independent experiments 
performed in duplicate. 

CREB Ser133 was detected in nuclei of near- 
ly 80% of the neurons; this result was not 
seen with control beads (Fig. 2B). In con- 
trast, NGF-coupled beads failed to stimulate 
CREB phosphorylation when applied to 
axon terminals and distal processes of sym- 
pathetic neurons (Fig. 2B). However, in 
parallel cultures, soluble NGF stimulated 
CREB phosphorylation in nearly 80% of 
neurons when applied to axon terminals. 
Thus, although internalization of NGF is 
not necessary for propagation of the NGF 
signal from the plasma membrane of the 
cell body to the nucleus, internalization and 
retrograde transport of NGF are critical for 
propagation of the NGF signal from the 
axon terminal and distal process to the 
nucleus. These results support a model in 

which NGF itself is a critical component of 
the retrograde signaling complex. 

The possibility that NGF is retrogradely 
transported to the cell body of sympathetic 
neurons as part of a complex with one of its 
receptors, TrkA, is supported by the obser- 
vation that NGF remains associated with 
tyrosine-phosphorylated TrkA in internal- 
ized vesicles purified from NGF-treated 
PC12 cells (1 5). We therefore tested 
whether exposure of terminals of sympa- 
thetic neurons to soluble NGF resulted in 
retrograde transport of autophosphorylated 
TrkA receptors. Appearance of tyrosine- 
phosphorylated TrkA (P-Trk) in cell bodies 
was determined by immunocytochemistry 
with antibodies that recognize TrkA only 
when it is phosphorylated on two tyrosine 
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rylation of CREB SerIz3. &on terminals and'distal of 
svmpathetic neurons qrown in center-plated chambers were 
treated with control medium, soluble NGF (200 ng/ml). NGF- 
coupled beads (4 ~l/ml), or control beads for 20 rnin. Alternatively, cell bodies of neurons grown in 
center-plated chambers were treated with the same stimuli for 10 rnin. Cells were then fixed for 
immunocytochemistry with anti-P-CREB. Values are means 2 SEM of three independent experiments 
performed in duplicate. 

Fig. 3. Appearance of ty- Cell bodies 
rosine-phosphorylated TrkA 
in distal processes and cell 
bodies after application of 
NGF to axon terminals and 
distal processes. Axon ter- 
minals and distal processes 
of neurons grown in center- 
plated chambers were un- 
treated (control) or were 
treated with NGF (200 ng/ 
ml) for 20 min. In the lower 
panels, the cell bodies were 
first treated with K-252a 
(100 nM, 30 min) and the 
terminals were then treated 
with NGF. Cells were fixed 
for immunocytochemistry 
with anti-P-Trk (Fig. 1 A) (1 6). 
This experiment was per- 
formed three times with sim- 
ilar results. Incubation of an- 
ti-P-Trk with the phosphoty- 
rosine-containing Trk pep- 

Distal processes 

Control 

tide used to generate the 
antibody, but not control 
peptides, abolished P-Trk immunoreactivity (14). Scale bar, 50 pm. 

NGF 
(terminals) 

NGF 
(terminals) 

K-252a 
(cell bodies) 

residues, Tyr674 and Tyr675 (Fig. 1A) (16). 
Upon exposure of axon terminals and distal 
processes to NGF, the amount of P-Trk 
immunoreactivity was increased in the dis- 
tal processes and also in cell bodies (Fig. 3), 
which suggests that P-Trk, like NGF, is 
retrogradely transported in sympathetic 
neurons. This conclusion is consistent with 
the observation that P-TrkA accumulates 
on the distal side of a ligation (1 7) or crush 
(1 8) of the sciatic nerve. Because NGF and 
TrkA remain associated within internalized 
vesicles (1 5), these results support a model 
in which NGF maintains cotransported 
TrkA in an active state. 

To test this idea, we used a potent and 
selective inhibitor of Trk protein kinase 
activity, K-252a (19, 20). Application of 
K-252a to cell bodies prevented the appear- 
ance of P-Trk in cell bodies after exposure 
of axon terminals and distal processes to 
NGF (Fig. 3). In contrast, application of 
K-252a to cell bodies did not block NGF- 
induced accumulation of P-Trk immunore- 
activity in distal axons and terminals. Thus, 
tyrosine kinase activity of retrogradely 
transported TrkA is critical for maintaining 
the receptor in an autophosphorylated state 
upon its arrival in the cell body. 

We next tested the possibility that ret- 

Fig. 4. Requirement of tyrosine kinase activity of 
retrogradely transported TrkA for propagation of 
the retrograde signal to CREB. Sympathetic neu- 
rons grown in center-plated chambers were un- 
treated, or either cell bodies or axon terminals and 
distal processes were exposed to K-252a (100 
nM, 30 min). Then, NGF was applied to axon ter- 
minals and distal processes or cell bodies, and 
P-CREB immunocytochemistry was done with 
antiiP-CREB. Values are means + SEM of three 
independent experiments performed in duplicate. 

rogradely transported, catalytically active 
TrkA contributes to retrograde signaling 
to the nucleus. For these experiments, we 
assessed the ability of terminally applied 
NGF to induce CREB phosphorylation in 
neurons in which we inhibited TrkA ki- 
nase activity in cell bodies but not in axon 
terminals and distal processes. When ap- 
plied to cell bodies, K-252a blocked phos- 
phorylation of CREB Ser133 in response to 
application of NGF to axon terminals and 
distal processes (Fig. 4). In contrast, K- 
252a treatment of axon terminals and dis- 
tal processes did not block phosphoryl- 
ation of CREB Ser'33 in response to appli- 
cation of NGF directly to the cell bodies. 
We conclude that retrogradely transport- 
ed, catalytically active TrkA and its li- 
gand, NGF, are components of a complex 
that conveys the NGF signal from the 
axon terminals to CREB within the nuclei 
of sympathetic neurons. 
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Hypermethylated SUPERMAN Epigenetic 
Alleles in Arabidopsis 

Steven E. Jacobsen and Elliot M. Meyerowitz* 

Mutations in the SUPERMAN gene affect flower development in Arabidopsis. Seven 
heritable but unstable sup epi-alleles (the clark kent alleles) are associated with nearly 
identical patterns of excess cytosine methylation within the SUP gene and a decreased 
level of SUP RNA. Revertants of these alleles are largely demethylated at the SUP locus 
and have restored levels of SUP RNA. Atransgenic Arabidopsis line carrying an antisense 
methyltransferase gene, which shows an overall decrease in genomic cytosine meth- 
ylation, also contains a hypermethylated sup allele. Thus, disruption of methylation 
systems may yield more complex outcomes than expected and can result in methylation 
defects at known genes. The clarkkent alleles differ from the antisense line because they 
do not show a general decrease in genomic methylation. 

DNA ~nethvlation is emertrintr as an im- - - 
portant cornionent of cell memory, the pro- 
cess bv which dividintr cells inherit states of - 
gene activity. In mammals, lnethylation ap- 
pears to play a key role in processes such as 
genomic imprinting and X-cl~ro~nosome in- 
activation, and in olants meth\llation is cor- 
related with a number of phenomena, in- 
cluding silencing of duplicated regions of 
the genome (1 ) .  

Arabidopsis mutants at the DDMl and 
DDLM2 loci have a reduced overall level of 
cytosine methylation and display a number 
of develop~nental defects (2) .  Transgenic 
Arabidopsis plants expressing an antisense 
cytosine ~nethyltransferase R N A  also ex- 
hibit abnormalities including a nu~nber  of 
floral defects resembling the phenotypes of 
known floral horneotic mutants (3, 4).  
These experiments suggest a direct cause 
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and effect relation between DNA methyl- 
ation and proper regulation of developmen- 
tally important genes. We describe here a 
class of epi-mutations in Arabidopsis that 
appear to be caused by o\,ermethylation of 
the flower development gene SUPERMAN 
(SUP). 

Seven independent mutants were iden- 
tified [clark kent (clit) 1 through 71 with 
phenotypes silnilar to but weaker than that 
of the knolvn sup rnutants (5, 6) .  Wild-type 
A~abidopsis flowers (Fig. 1A) contain six 
stamens (the rnale reproductive organs) and 
two central carpels that fuse to form the 
female reproductive structure. The sup-5 
allele (Fig. 1B) ( 7 ) ,  [vhich contains a nearly 
complete deletion of the SLTP gene (S), 
produces an increased number of stalnens 
[12.3 t 0.3 (mean 2 SE)] and carpels 
(2.9 i 0.1) on the first 10 flowers produced 
on  the plant. The elk-3 allele (Fig. 1C)  has 
an average of 7.8 t 0.3 starnens and 3.4 t 
C.l carpels, whereas the weaker elk-l allele 
has an average of 6.4 2 C.l stamens and 
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