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Pain Affect Encoded in Human Anterior
Cingulate But Not Somatosensory Cortex

Pierre Rainville, Gary H. Duncan, Donald D. Price,
Benoit Carrier, M. Catherine Bushnell*

Recent evidence demonstrating multiple regions of human cerebral cortex activated by
pain has prompted speculation about their individual contributions to this complex
experience. To differentiate cortical areas involved in pain affect, hypnotic suggestions
were used to alter selectively the unpleasantness of noxious stimuli, without changing
the perceived intensity. Positron emission tomography revealed significant changes in
pain-evoked activity within anterior cingulate cortex, consistent with the encoding of
perceived unpleasantness, whereas primary somatosensory cortex activation was un-
altered. These findings provide direct experimental evidence in humans linking frontal-
lobe limbic activity with pain affect, as originally suggested by early clinical lesion studies.

Affective aspects of pain, such as perceived
unpleasantness, have been classically con-
sidered to be distinct from the simple sen-
sory dimensions of pain, which include the
perception of location, quality, and inten-
sity of noxious stimulation (1). Largely on
the basis of indirect evidence, separate neu-
ronal pathways have been postulated to un-
derlie these different aspects of the pain
experience (2). For example, involvement
of frontal lobe regions, particularly the an-
terior cingulate cortex (ACC), in pain af-
fect is suggested by clinical reports that
patients with frontal lobotomies or cingu-
lotomies sometimes still feel pain but report
it as less distressing or bothersome (3). On
the other hand, primary and secondary so-
matosensory cortices (SI and SII) have
been considered plausible candidates for the
processing of sensory-discriminative aspects
of pain, on the basis of their anatomical
connections to subcortical and spinal re-

gions, which encode discriminative proper-
ties of somatosensory stimuli (4). Recent
neuroimaging studies in humans document-
ed pain-related activation in limbic sites,
such as ACC and rostral insula (IC), and in
the primary sensory regions Sl and SII (5).
In addition, anatomical and electrophysio-
logical data show that these regions receive
direct nociceptive input in the monkey (6).
However, the extent to which these differ-
ent cortical structures contribute to specific
dimensions of the human pain experience is
largely unknown and untested.

In the present study we used hypnosis as
a cognitive tool to reveal possible cerebral
mechanisms of pain affect in normal human
volunteers. A perceptual dissociation of
sensory and affective aspects of the pain
experience was achieved with hypnotic sug-
gestions to both increase and decrease pain
unpleasantness, without changing the per-
ceived intensity of the pain sensations (7).
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Cerebral cortical activity related to this per-
ceptual dissociation was measured by
positron emission tomography (PET) (8).

PET scans were conducted during con-
ditions of alert control, hypnosis control,
and hypnotic suggestion for increased un-
pleasantness (fUNP) or decreased unpleas-
antness (L UNP) (9). During each scan ton-
ic stimuli were presented to the left hand by
passive immersion in “neutral” (35°C) or
“painfully hot” (47°C) water (10). After
each scan, the perceived intensity and un-
pleasantness of the stimulation were rated
by the participant (11).

Regional cerebral blood flow (rCBF) was
measured with three-dimensional high-res-
olution PET after H,O bolus injection
(12). Each participant also received a high-
resolution magnetic resonance imaging
(MRI) anatomical brain scan that was used
for alignment and transformation of PET
volumes into the Talairach coordinate sys-
tem (13). To obtain volumes of pain-related
changes in rCBF for each participant, we
subtracted normalized PET data recorded
during the “neutral” condition from those
of the “painfully hot” condition. Resulting
volumes of pain-related changes in rCBF
were averaged across sessions, and statistical
activation maps were derived on the basis of
the methods of Worsley et al. (14). Directed
searches of rCBF increases were conducted
on right (contralateral to stimulus) SI, SII,
ACC, and IC to confirm pain-related acti-
vation of these structures and to test the
hypothesis that changes in pain unpleasant-
ness modulate activity only within limbic
regions thought to be involved in affective
processes. The threshold for statistical sig-
nificance was corrected for multiple com-
parisons (15).

Results of “painfully hot” versus “neu-
tral” subtractions from scans taken during
the alert control condition support previous
findings of significant pain-related activa-

P. Rainville, Département de Psychologie and Centre de
Recherche en Sciences Neurologiques, Université de
Montréal, Montréal, Québec, Canada H3C 3J7, and Mc-
Connell Brain Imaging Center, Montreal Neurological In-
stitute, Montréal, Québec, Canada H3A 2B4.

G. H. Duncan, Département de Stomatologie, Faculté de
Médecine Dentaire, and Centre de Recherche en Scienc-
es Neurologiques, Université de Montréal, Montréal,
Québec, Canada H3C 3J7, and McConnell Brain Imag-
ing Center, Montreal Neurological Institute, Montréal,
Québec, Canada.

D. D. Price, Department of Anesthesiology, Medical Col-
lege of Virginia, Richmond, VA 23298, USA.

B. Carrier, Département de Stomatologie, Faculté de Mé-
decine Dentaire, Université de Montréal, Montréal, Qué-
bec, Canada H3C 3J7.

M. C. Bushnell, Centre de Recherche en Sciences Neu-
rologiques, Université de Montréal, Montréal, Québec,
Canada H3C 3J7, McConnell Brain Imaging Center,
Montreal Neurological Institute, Montréal, Québec, Can-
ada, and Department of Anesthesiology, McGill Universi-
ty, Montréal, Québec, Canada H3A 1A1.

*To whom correspondence should be addressed. E-mail:
bushnellc@medcor.mcgill.ca

tions in SI, SII, IC, and ACC (Table 1).
After hypnotic induction, but before sug-
gestions of increased or decreased unpleas-
antness, painful heat again activated these
four cortical areas (Table 1), indicating lit-
tle influence of hypnotic induction itself on
pain-related activation. Similarly, the hyp-
notic induction had no significant effect on
psychophysical ratings of either pain inten-
sity or unpleasantness (alert control com-
pared with hypnosis control: intensity,
77.6 = 14.7 and 75.0 * 14.0, and unpleas-
antness, 61.4 * 28.8 and 54.8 = 25.8,
respectively).

Hypnotic suggestions for increased or
decreased unpleasantness, on the other
hand, altered both the perception of pain
affect and the activation within some but
not all of these pain-related cortical regions.
A comparison of rCBF changes between
hypnotic suggestion and hypnosis control
conditions revealed significant pain-related
activations in SI, ACC, and IC, during
both PUNP and |UNP conditions. With-
in the vicinity of SII, however, no signifi-
cant pain-evoked activity was observed in
either the TUNP or |[UNP conditions
(Table 1). One possible explanation for this

_absence of pain-evoked activity in SII is

that the mental effort or attention demand-
ed by these suggestions may suppress such
activation. Alternatively, there may have
been an habituation of SlII activity with

repeated stimulation.

The effectiveness of hypnotic suggestions
in selectively altering pain affect is demon-
strated by the significant difference observed
only in the participants’ ratings of unpleasant-
ness during the TUNP and |UNP conditions
[unpleasantness: 81.4 = 14.6 and 45.0 = 25.8,
respectively, analysis of variance (ANOVA)
P < 0.001; intensity: 78.0 = 14.6 and 71.2 =
18.2, respectively, statistically not significant].
In parallel with this modulation in pain affect,
direct volume-of-interest (VOI) comparisons
(16) of the three pain sites activated during
the hypnotic suggestion conditions revealed
significantly greater activation during TUNP
scans, compared with that observed during
JUNP, only in ACC (P < 0.02; see Fig. 1).
In SI, pain-related rCBF was actually lower
(nonsignificantly) in the TUNP condition
than in the |UNP condition, indicating no
tendency for increased activation in this area
related to increased unpleasantness.

To test the strength of the relation be-
tween pain affect and activation within the
ACC, we did regression analyses of unpleas-
antness ratings and rCBF levels across all
participants and all scans taken during the
hypnotic suggestion condition for each pain
activation site. After removing effects due to
interperson variability, perceived intensity,
and scan session, the residual variance in
tCBF [analysis of covariance (ANCOVA)]

demonstrates that only activation levels

Table 1. Pain-related activation sites within S, Sll, ACC, and IC. Coordinates are given in Talairach
space (73); Lateral, anterior, and superior are relative to midline, anterior commisure, and commissural
line, respectively (positive values are right, anterior, and superior). At statistic of 2.55 is equivalentto P =

0.05 (15).
Stereotaxic coordinates (mm)
Region
Lateral Anterior Superior
Alert control
Sl +42 -18 +40 3.01
Sl +44 -23 +20 4.18
ACC +1 +5 +36 4.04
IC +42 -6 +12 3.61
Hypnosis control
Sl +39 -21 +59 3.69
Sl +40 -18 +20 2.65
ACC -8 -4 +34 3.86
+7 +18 +32 2.52*
+16 +18 +36 3.34
IC +31 +10 +12 3.77
+35 +2 +1 4.16
Increased unpleasantness (fUNP)
Sl +31 -28 +57 3.84
Sl No peak with t > 2.50
ACC +3 +20 +30 6.11
IC +34 +22 0 4.50
Decreased unpleasantness (JUNP)
Sl +34 -19 +56 4.61
Sl No peak with t > 2.50
ACC -1 +25 +29 4.42
+13 +18 +36 3.64
+38 +8 +3 4.66
*P = 0.053
www.sciencemag.org ® SCIENCE ¢ VOL. 277 » 15 AUGUST 1997 969



Fig. 1. Changes in pain-re-
lated activity associated with
hypnotic  suggestions  of
high and low unpleasant-
ness (left and right images,
respectively) are revealed by
subtracting PET data re-
corded during the neutral/
hypnosis control condition
from those of the painfully
hot/fUNP and painfully
hot/ JUNP conditions. PET
data, averaged across 11
experimental sessions, are
illustrated against an MRI
from one person; horizontal
and saggital slices through
Sl and ACC, respectively,
are centered at the activa-
tion peaks observed during
the relevant suggestion con-
ditions; red circles indicate
the location and size of VOIs
used to analyze activation
levels across the two condi-
tions (76).

High

within the ACC (Fig. 2) are consistent with
the encoding of the perceived unpleasant-
ness of these noxious stimuli (ACC: Pear-
son’s correlation coefficient, r, = 0.419, P =
0.005; IC: r = 0.245, P = 0.134; SL: r =
-0.224, P = 0.149).

These results demonstrate a modulation
of pain-related activity in ACC that closely
parallels a selective change in the perceived
unpleasantness of painful stimuli. The ab-
sence of changes in the sensory component
of pain perception and the lack of similar
modulation within other pain-related corti-
cal structures argue for a significant in-
volvement of the ACC in the affective
component of pain. Such findings support
earlier proposals that the anterior cingulate
gyrus is integrally involved in pain and
emotions (3, 5, 6), but our findings go
beyond these general ideas by providing
direct evidence of a specific encoding of
pain unpleasantness in the ACC.

We propose that pain-related activation
in ACC reflects a nociceptive input from a
highly modifiable pain pathway (17), and
that the level of pain-evoked ACC activa-
tion is determinant in the individual’s emo-
tional and behavioral reactions to pain. The
proximity of the nociceptive, motor, and
attentional regions of ACC (18) suggests
possible local interconnections that might
allow the output of the ACC pain area to
command immediate behavioral reactions.

970

Similarly, the ACC pain area might partic-
ipate in the substantial interconnections
between the ACC and the “fight or flight”
regions of the midbrain periaqueducal gray
matter (19).

The anatomical connections between
ACC, IC, SI, and SII (20) suggest that
these regions do not function independent-
ly in encoding different aspects of pain but
are highly interactive. Such interactions are
reflected in the experiences of pain itself.
For example, pain intensity, location, and
quality (sensory features) are major factors
in determining unpleasantness (21). Never-
theless, despite these associations, there ap-
pears to be at least a partial segregation of
function between pain affect and sensation,
with ACC activity possibly reflecting the
emotional experience that provokes our re-
actions to pain. '
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