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Neural Correlates of Motor Memory 
Consolidation 

Reza Shadmehr* and Henry H. Holcomb 

Computational studies suggest that acquisition of a motor skill involves learning an 
internal model of the dynamics of the task, which enables the brain to predict and 
compensate for mechanical behavior. During the hours that follow completion of prac- 
tice, representation of the internal model gradually changes, becoming less fragile with 
respect to behavioral interference. Here, functional imaging of the brain demonstrates 
that within 6 hours after completion of practice, while performance remains unchanged, 
the brain engages new regions to perform the task; there is a shift from prefrontal regions 
of the cortex to the premotor, posterior parietal, and cerebellar cortex structures. This 
shift is specific to recall of an established motor skill and suggests that with the passage 
of time, there is a change in the neural representation of the internal model and that this 
change may underlie its increased functional stability. 

A s  one ~ract ices a motor task, stiffness of 
the limbs decreases (1 ), movements become 
smoother (2), and the muscle activations 
reflect a reliance of the motor output on an  
internal model (IM) that anticipates the 
force requirements of the task (3, 4). In a 
computational framework, the IM for arm 
movements may be characterized, in part 
(5), as a map from a desired trajectory for 
the hand to a set of muscle torques (6). 
Because we routinely use our hands to in- 
teract with a diverse variety of objects and 
systems, we rely on visual and haptic prop- 
erties of the task to act as cues that facilitate 
recall of an  appropriate IM from motor 
memory (7). Attempting to pick up an 
empty bottle of milk that has been painted 
white readily illustrates the consequences of 
visually cued recall of an  inappropriate IM. 

A single session of practice with a novel 
mechanical system may lead to long-term 
storage of an IM in the brain (8). However, 
when practice ends, a functional property of 
the IM continues to deve lo~ .  Within 5 
hours, the recently acquired IM gradually 
becomes resistant to behavioral interfer- 
ence (8,  9), that is, it consolidates. Al- 
though the mechanisms of motor memory 
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consolidation are unknown, examples from 
other memory systems of the brain show 
that a change in the neural representation 
of memory may contribute to consolidation 
(10). There is also evidence that neural 
representation of motor function is dynamic 
(1 1)  and that motor areas of the primate 
brain are differentially associated with the 
performance of either a new or well-prac- 
ticed motor task (12). Here we ask whether 
with the passage of time, as the IM becomes 
less fragile, there is a change in the neural 
representation of its motor memory. 

We  used positron emission tomography 
(PET) to monitor changes in regional cere- 
bral blood flow (rCBF), an  indirect marker 
of neural activity, mainly around the syn- 
apses (13), as participants (n = 16) learned 
an IM of a novel mechanical system (Fig. 
1A). The dynamics of the novel system 
were represented as a force field and were 
produced by the torque motors of a robotic 
arm (6). The task was to make rapid reach- 
ing movements to a series of targets while 
holding the handle of the robot (14). Par- 
ticipants initially practiced the task with 
the robot motors turned off (300 targets, 
during which no  rCBF measures were tak- 
en) .  They made accurate, straight move- 
ments, similar to that shown in Fig. 1B. In 
session 1, we acquired rCBF measures (15) 
as participants performed the task during 
two repetitions of four successive condi- 
tions: (i) during a null field condition in 
which the robot's motors were off (Fig. 1B); 
(ii) during a random field condition in 
which the robot produced a random, non- 
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stationary, velocity-dependent force field 
representing an unlearnable mechanical 
system (Fig. 1C); (iii) during early learning 
of a force field (1 6) (Fig. 1 D), in which the 
robot produced a stationary force field we 
labeled "A" and which represented a learn- 
able mechanical system (Fig. 1E); and (iv) 
during late learning of force field A, in 
which participants performed the task skill- 
fully (Fig. IF) after further practice in field 
A. When participants were first exposed to 

the forces, movements deviated from the 
straight-line trajectories (Fig. 1G). In the 
random field, movements did not signifi- 
cantly improve with practice. However, 
rapid improvements occurred when the 
field was held stationary. With practice, the 
movements gradually converged to those 
recorded in the null field condition (Fig. 
1H). Participants then returned 5.5 hours 
later for session 2, in which we acquired 
rCBF measures during two repetitions of 

-1 -0.5 0 0.5 1 
Hand x velocity (mls) 

-- 
200 0 20( 
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Fig. 1. The motor learning task. (A) Participants gripped the handle of a robot manipulandum and moved 
it to targets that appeared on the monitor in one of eight directions: 0 to 315" in 45" increments, 
randomly selected (8). Participants were provided with continous visual feedback. The task was to reach 
the target in a precise time (14). We acquired PET scans during five conditions: null field (robot motors 
not engaged); random force field (robot motors producing a nonstationary field); early learning of field A 
(16); late learning of field A; and, at +5.5 hours, recall of field A or early learning of field B. (B) Hand 
trajectories (mean ?SD) for a typical participant during the null field condition. (C) Typical hand trajec- 
tories during a random field condition. The robot's motors produced a velocity-dependent force field 
that randomly varied from target to target. This substantially disturbed the hand trajectories and required 
corrective movements while precluding the possiblity of learning an IM. (D). The force field A (16). (E) 
Trajectories (mean 2 SD) during the early learning stage of field A (first 100 movements) for a typical 
participant. (F) Trajectories (mean ? SD) during the late learning stage of field A (last 100 movements) for 
a typical participant. (G) Length (mean 2 SE) of reaching movements during task performance. Each 
point is an average of eight movements. Gray bars indicate periods of brain image acquisition. There was 
no significant improvement during the random field condition. However, participants were skillfully 
controlling their arms during the late stage of learning of A and were able to recall the appropriate IM at 
+5.5 hours. Performances were not significantly different at recall versus late learning. (H) Hand 
trajectories for each participant during each condition were correlated with that participant's typical 
trajectory during the null condition (6). Shown here are the population mean 2 95% confidence intervals 
(CI). With practice, movements converge to the trajectories recorded in the null field. 

only one of the following conditions: (i) 
recall of the IM of field A (n = 9 partici- 
pants) or (ii) early learning of field B (n = 
7 participants) (1 6). 

We initially asked whether during ses- 
sion 1 there were brain regions where rCBF 
correlated with measures of total motor out- 
put. The average length of a movement was 
selected as an indicator of motor output 
(Fig. 1G) (1 7). Statistical parametric maps 
were generated (18), and we found three 
regions where activations significantly cor- 
related with motor output: the left sensori- 
motor cortex (SMC) (-58, -32, 52; Z = 
+4.81; Fig. 2A), with the peak correspond- 
ing to Brodmann's area (BA) 4; the right 
SMC (48, -40, 52; Z = +3.41); and the 
right putamen (30, -6, -4; Z = +3.49). 
Changes in rCBF in the SMC have been 
shown to correlate with arm and finger 
force production in a task that precluded 
motor learning (19). Given the significant 
projections from the SMC to the putamen, 
it is likely that changes observed in these 
regions are associated with large-scale re- 
ductions in motor output from the random 
to the late learning condition rather than 
with acquisition of an IM. 

Because learning of the IM has compo- 
nents associated with visual perception, 
force production, attention, and error-re- 
duction processes, a comparison of the ad- 
aptation condition with a rest condition 
does not imply learning-related activity. To 
test for learning-specific changes, we com- 
Dared the rCBFs during the random condi- 

L. 

tion, where every component of the task 
but learning was present, with that of early 
learning of A. The only significant change 
was an increase in a region encompassing 
the dorsomedial and medial pulvinar thala- 
mus (peak at 4, -24, 10; Z = +4.47). This 
increase was accompanied with increases in 
the medial occipital gyrus (-14, -94, -12; 
BA 18; Z = +3.84) and dorsolateral pre- 
frontal cortex (42, 40, 10; BA 46; Z = 
+3.78; Fig. 2B). There were no significant 
differences in comparisons of the early and 
late learning conditions, other than the 
decreases observed in the SMC (Fig. 2A) 
and putamen. This suggests that the im- 
provement in performance from the ran- 
dom to the learning condition during ses- 
sion 1 was at least in part due to an increase 
in activation of visuomotor association ar- 
eas of BA 46 in the prefrontal cortex (20). 

We found that with the passage of time, 
however, significant changes took place in 
the representation of the IM. Participants 
returned 5.5 hours after com~letion of ses- 
sion 1 and were presented with either field 
A or a novel field B. Motor ~erforrnances 
during the late learning stage of A and the 
recall stage of A were not significantly dif- 
ferent (Fig. 1, G and H). However, there 
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were significant increases in rCBF in three 
structures: in the left posterior parietal cor- 
tex (-30, -78, 54; BA 7; Z = +4.95; late A 
versus recall A; Fig. 3A); the left dorsal 
premotor cortex (PMC) (-50, -16, 60; BA 
6; Z = +3.74; late A versus recall A; Fig. 
3B); and the right anterior cerebellar cortex 
(18, -60, -20; Z = +4.93; early A versus 
recall A; Fig. 3C). These changes were spe- 
cific to recall of the previously learned field. 
The group that was presented with field B 
during session 2 did not show similar chang- 
es, despite the fact that they had an in- 
creased motor output (Fig. 1G). We also 
found that recall of A involved significantly 
decreased levels of rCBF (with respect to 
late A)  in the left (-46,32, 28; BA 46; Z = 
-4.97) and right (42, 28, 20; BA 46; Z = 
-4.39) middle frontal gyri of the prefrontal 
cortex. The decreases in rCBF observed in 
these two regions were 7.0 2 1.9% and 
5.1 2 2.0% (mean 2 95% confidence in- 
terval) for the left and right prefrontal re- 
gions, respectively. In comparison, no sig- 
nificant decreases were observed in the pre- 
frontal cortex when participants were pre- 
sented with field B. 

It has been hypothesized that acquisition 
of a skilled movement is mediated principal- 
ly through structures in the prefrontal cor- 
tex, and that with time or practice, as the 
task becomes "automatic." motor structures 
such as the cerebellum assume a greater role 
and possibly become the site of the motor 
memory (21 ). There is evidence that in hu- 
mans, disruption of the prefrontal cortex pre- 
vents motor learning without disrupting mo- 
tor execution (22). In our experiment, ac- 
quisition of the IM was associated with in- 
creased activation in the dorsolateral 
prefrontal cortex. Although the performance 
of our participants neared asymptotic levels 
during the late stage of learning (23), we did 
not observe an increased role for the anterior 
reeions of the cerebellum or other motor " 
structures with respect to random or early 
learning. This is in agreement with a number 
of other PET studies of motor learning (24, 
25). However, we cannot rule out the influ- 
ence of the cerebellum in initial acquisition 
of the IM, because posterior regions of the 
cerebellum were not sampled (1 8). When 
the participants were retested at +5.5 hours, 
there was no significant change in motor 
perfoimance. However, comparison of rCBFs 
between recall and late learning stages of A 
revealed that there was a significant reorga- 
nization of the representation of the memory 
of the IM. With the passage of time, recall of 
the IM engaged areas of the contralateral 
dorsal premotor, contralateral posterior pari- 
etal. and i~silateral anterior cerebellar cortex 
structures. This was coincident with a reduc- 
tion in activations of the bilateral middle 
frontal gyri of the prefrontal cortex. The 

decreased role of the prefrontal cortex has 
been observed in other studies in which a 
previously learned motor skill was recalled 
(25, 26). 

A function of the prefrontal cortex is 
temporary storage of arbitrary sensorimotor 
information for use in the near term (27). 
Inherent in this faculty is the transient 
nature of the associations (28). Previous 
results on learning control of novel me- 
chanical systems suggest that the represen- 
tation of an IM in humans is most fragile 
soon after it has been acquired (8 ,9) .  With- 
in 5 hours after initial practice, the IM's 
representation becomes resistant to behav- 
ioral interference. We have shown here 
that this change in the functional stability 
of the acquired memory coincides with a 
reduced activation in the prefrontal struc- 
tures and an increase in regions of the brain 
where long-term motor memory storage has 
been hypothesized (29). 

Recordings of electromyographic activ- 
ity from the arm during practice of this 
task suggest that participants gradually 
learn to recruit new arm muscles and pre- 
cisely control the timing of activations of 
these muscles in order to compensate for 
the force field (30). Studies of similar 
tasks in highly trained monkeys suggest 
that the cerebellum is likely to play a 

critical role in generating this response 
(3). In humans, cerebellar malfunction re- 
sults in the loss of ability to anticipate and 
compensate for interaction torques that 
are generated in multijoint arm move- 
ments (31 ). Although the role of the cer- 
ebellar cortex in initial acquisition of the 
IM is unclear (32), it has been shown that 
within an hour after completion of motor 
learning, biochemical processes that are 
involved in the synaptic remodeling of 
Purkinje cells are initiated (33). There- 
fore. it seems likelv that the cerebellum is 
part of the system that maintains long- 
term motor memories. O n  the other hand. 
lesion, inactivation, and recording studies 
of the PMC suggest that it is primarily 
involved in retrieval of a motor response 
as cued by a visual or auditory stimulus 
(34). Neuronal recordings show a phase 
lag between increased activity in some of 
the cells in the dorsal PMC and behavioral 
improvement (35). This has suggested 
that PMC cells function in the retrieval ~ - 

processes of an established visuomotor as- 
sociation, rather than in learning of the 
association (36). A major input to the 
dorsal PMC is from the posterior parietal 
cortex (37). The architecture of this net- 
work has been proposed to code reaching 
movements as the result of a combination 

Fig. 2. Relative changes in rCBF (with respect to the null field condition) for two areas of the brain that 
showed increased activation during motor execution or learning. The regions are shown on the normal- 
ized MRI of atypical participant (18). Regions of activation are also localized on the rendered brain of the 
same participant. (A) We looked for regions of the brain where rCBF changes correlated with total motor 
output (18). The region with the highest correlation was located in the left sensorimotor cortex (peak 
location at -58, -32,52; BA 4; Z = +4.81), shown here on a transverse view. The figure also shows the 
percentage change of the rCBF for all participants at the peak location (mean 5 95% CI). (6) Sagittal 
view of an area in the right prefrontal cortex (middle frontal gyrus) showing an increase in activity during 
early learning with respect to the random condition (peak location at 42,40,10; BA 46; Z = +3.78). Also 
shown are the rCBF changes at this location. 
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Scan 

Fig. 3. Brain regions showing a significant increase in rCBF from the learning stage of field A to recall of 
field A at +5.5 hours. The regions are shown on the normalized MRI of a typical participant (18). (A) 
Transverse view of an area in the left posterior parietal cortex beak location at 3 0 ,  -78, 54; BA 7; Z = 
+4.95; late Aversus recall A) and the peak location'schanges in rCBF with respect to the null field (mean 
95% CI). Shown also are the changes in rCBF from the group of participants that learned a novel field B 
at +5.5 hours. (B) Transverse view of an area of activation in the left dorsal premotor cortex (-50, -1 6, 
60; BA 6; Z = +3.74; late A versus recall A). (C) Sagittal view of an area of activation in the right anterior 
cerebellar cortex (1 8, -60, -20; Z = +4.93; early A versus recall A). The increased activations in these 
regions were specific to recall of the recently acquired IM of field A. 

of visual and somatic information (38). 
Indeed, parietal lobe lesions produce 
apraxia, an impairment o f  skilled move- 
ments in the absence o f  elementary sen- 
sory or motor deficits. Motor memory def- 
icits in apraxic patients suggest a loss of a 
component o f  the IM (39). 

The results presented here suggest that 
the representation of a motor skill is reor- 
ganized in the brain shortly after an IM has 
been acquired. Although this reorganiza- 
t ion does not  affect task performance, it 

may contribute to  increased stability of the 
representation of the motor skill. 
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Drosophila Mitotic Domain Boundaries as Cell 
Fate Boundaries 

Sidney B. Cambridge, Robert L. Davis, Jonathan S. Minden* 

Fate determination in Drosophila embryos is evidenced by the appearance of mitotic 
domains. To identify fate or fates of cells, individual cells in mitotic domains 2, 8, and 
15 were marked and monitored through development. Comparison of the different fates 
indicated that domain boundaries are cell fate boundaries. Cells were marked by ex- 
pression of GAL4-dependent transgenes after photoactivation of a caged GAL4VPl6 
analog that had its DNA binding activity inhibited with a photolabile blocking reagent. 
Caged GAL4VPl6 was also used to induce gene expression in Xenopus embryos. Thus, 
photoactivated gene expression is a versatile tool for spatiotemporal control of gene 
expression. 

T o  control the temporal and spatial ex- 
pression of selected genes at the single-cell 
level for the purpose of fate mapping and 
genetic manipulation, we devised a method 
for "caging" the DNA binding activity of 
GAL4VP16, a potent transcriptional acti- 
vator. Caging is a form of photo-reversible 
chemical modification that has been used 
in the light-mediated activation of mole- 
cules such as adenosine 5'-triphosphate, 
Ca2+-chelators, and actin ( I ) .  Caged 
GAL4VP16 was produced by modifying ly- 
sine residues of purified GAL4VP16 (2)  
with the amine-reactive compound 6-nitro- 
veratrylchloroformate (NVOC-Cl) (3). 
GAL4VP16 DNA binding activity was 
abolished after a 30-min incubation with 2 
mM NVOC-Cl under mildly basic condi- 
tions (Fig. 1A). More than 50% of the 
initial binding activity was recovered by 
irradiating the caged GAL4VP16 with a 
low-intensity, long-wavelength (365 nm) 
ultraviolet (UV) lamp. 

Caging of GAL4VP16 with 0.5 mM 
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NVOC-Cl, which modified about 8 of the 
14 GAL4VP16 lysines (4), completely in- 
hibited in vivo transcriptional activation in 
Drosophila embryos (5). This level of caging 
did not affect GAL4VP16 DNA binding 
activity in vitro (Fig. 1A). It is not known 
why the lower level of caging inhibited in 
vivo activity (6). Inhibition of the transcrip- 
tional activity of caged GAL4VP16 could be 
reversed in vivo with 365-nm light from a 
100-W mercury lamp shone through a mi- 
croscope objective via the epi-fluorescence 
light path of a standard inverted microscope. 
Experiments with Drosophila embryos re- 
quired 3 to 4 s of irradiation (7) for maximal 
photoactivation. 

We  determined the efficiency of 
GAL4VPl6-mediated photoactivated gene 
expression by quantitating the fluorescence 
of coinjected RGPEG (8), a fluorogenic P- 
galactosidase (@-Gal) substrate, in embryos 
that contained a GAL4-dependent lac2 con- 
stmct (UAS,lacZ) (Fig. 1B). GAL4VP16 
was usually injected at a concentration of 0.2 
mg/ml or less (9). Concentrations of unmod- 
ified or caged GAL4VP16 greater than 0.4 
mg/ml caused developmental defects. This 
may have resulted from squelching, where 
general transcription factors bound to the 
acidic domain of unbound GAL4VP16 (1 0). 
Injection of RGPEG alone or with caged 
GAL4VP16, but not followed by irradiation, 
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