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Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by 
the widespread development of distinctive tumors termed hamartomas. TSC-determin- 
ing loci have been mapped to chromosomes 9q34 (TSCI) and 16p13 (TSC2). The TSCl 
gene was identified from a 900-kilobase region containing at least 30 genes. The 8.6- 
kilobase TSCl transcript is widely expressed and encodes a protein of 130 kilodaltons 
(hamartin) that has homology to a putative yeast protein of unknown function. Thirty-two 
distinct mutations were identified in TSC1, 30 of which were truncating, and a single 
mutation (2105delAAAG) was seen in six apparently unrelated patients. In one of these 
six, a somatic mutation in the wild-type allele was found in a TSC-associated renal 
carcinoma, which suggests that hamartin acts as a tumor suppressor. 

TSC is a systemic disorder in which hamar- 
tomas occur in'multiple organ systems, par- 
ticularly the brain, skin, heart, lungs, and 
kidneys (1; 2). In addition to its distinct 
clinical presentation, two features serve to 
distinguish TSC froin other familial tumor 
syndromes. First, the tumors that occur in 
TSC are very rare in the general population, 
such that several TSC lesions are, by them- 

selves, diagnostic of TSC. Second, TSC 
hamartomas rarely progress to malignancy. 
Only renal cell carcinoma occurs at in- 
creased frequency in TSC (-2.5%) and with 
earlier age of onset; it appears to arise in 
TSC renal hamartomas, termed angiomyoli- 
pomas (3). Nonetheless, TSC can be a dev- 
astating condition, as the cortical tubers 
(brain hamartomas) frequently cause epilep- 

sy, mental retardation, autism, or attention 
deficit-hyperactive disorder, or a combina- 
tion of these conditions (1 , 4). 

TSC affects about I in 6000 individuals, 
and -65% of cases are sporadic (5). Linkage 
of TSC to chromosome 9q34 was first report- 
ed in 1987, and this locus was denoted TSCl 
(6). Later studies provided strong evidence for 
locus heterogeneity (7) and led to the identi- 
fication of chromosome 16p13 as the site of a 
second TSC locus (denoted TSC2) (8). The 
TSC2 gene was identified by positional clon- 
ing, and the encoded protein, denoted tu- 
berin, contains a domain near the COOH- 
terminus with homology to a guanosine 
triphosphatase (GTPase) activating protein 
(GAP) for rapl, a Ras-related GTPase (9). 

The focal nature of TSC-associated 
hamartomas has suggested that TSCl and 
TSC2 may function as tumor suppressor 
genes. The occurrence of inactivating germ- 
line mutations of TSC2 in patients with 
tuberous sclerosis (9-1 1 ) and of loss of het- 
erozygosity (LOH) at the TSC2 locus in 
about 50% of TSC-associated hamartomas 
( 12-1 4)  supports a tumor suppressor func- 
tion for TSC2. In contrast, LOH at the 
TSCl locus has been detected in < lo% of 
TSC-associated hamartomas (1 3 ,  14), sug- 
gesting the possibility of an  alternative 
pathogenic mechanism for lesion develop- 
ment in patients with TSCl disease. 

As part of a comprehensive strategy to 
identify TSCl , we identified I I microsatel- 
lite markers from the 1.4-Mb TSCl region 
and developed an overlapping contig (with 
only a single gap of 20 kb) of cosmid, P1 
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artificial chromosome (PAC), and bacterial 
artificial chromosome (BAC) clones (15). 
Figure 1 shows the TSCl region (1 6 ,  17), 
including limiting centromeric and telo- 
meric markers, as derived from analyses of 
affected individuals (solid arrows) from 
families with individual lod scores of >2 
(1 8). These limits are also consistent with 
the information available from LOH studies 
(1 3). Two additional recombination events 
were identified in unaffected individuals 
(open arrows), also from families with lod 
scores of >2 (1 9). In each of these families, 
two individuals from different generations 
carried the same recombinant chromosome, 
and all four had no evidence of TSC. Be- 
cause the penetrance of TSC is nearly 
100% (2), we concentrated our search with- 
in the 900-kb region between markers 
D9S2127 and DBH. 

In a search for further positional infor- 
mation, we looked for large deletions and 
rearrangements by means of pulsed-field gel 
electrophoresis (Fig. 1) (9) and through 

analysis of patient-derived hybrid cell lines 
retaining a single chromosome 9 bearing a 
TSCl mutation (20). No abnormalities 
were detected, and we therefore began a 
systematic gene-by-gene analysis. 

Several techniques were used to identify 
genes in the TSCl region, which proved to 
be relatively gene-rich. Using a combina- 
tion of exon trapping (21), cDNA selec- 
tion, expressed sequence tag (EST) map- 
ping, and whole-cosmid hybridization (22), 
we identified 142 exons and 13 genes be- 
tween D9S1199 and D9S114. In all, 30 
genes were identified or mapped to the 
900-kb critical region. 

In parallel, we began sequencing the en- 
tire contig (23). We used the polymerase 
chain reaction (PCR) to amplify putative 
(24) and confirmed exons found in 208 kb 
of sequence on a screening set of 60 DNA 
samples from 20 unrelated familial TSC 
cases with linkage to 9q34, and 40 sporadic 
TSC cases (18). Amplification products 
were analyzed for heteroduplex formation 

using weakly denaturing polyacrylamide 
gels (25). The 62nd exon screened demon- 
strated mobility shifts in 10 of the 60 pa- 
tient samples (Fig. 2A). 

Sequence analysis revealed seven small 
frameshifting deletions (three identical), one 
nonsense mutation, one missense change, 
and one polymorphism that did not change 
the encoded amino acid (Fig. 2B). Eight of 
the nine mutations were from the 20 familial 
cases tested, and only one mutation was seen 
among the 40 sporadic cases (Fig. 2C). Anal- 
ysis of samples from other family members 
confirmed that each of the familial muta- 
tions segregated with TSC and that a frame- 
shift mutation had occurred de novo in the 
sporadic case (Fig. 2D). The recurrent mu- 
tation, 2105delAAAG, was identified in 
two apparently unrelated familial cases and a 
sporadic case. Haplotype analysis of the fam- 
ilies, using markers flanking the mutation 
(D9S2126, D9S1830, and D9S1199, Fig. I), 
confirmed that the three mutations were of 
independent origin. 

Fig. 1. The TSCl region on chromosome 9. The ideogram (top) represents a normal G-banded metaphase 
chromosome 9, with the TSCl region located at 9q34. The male genetic map (next line) shows selected 
anchor polymorphic loci mapped to 9q34. The detailed physical map of the candidate region (next led) 
shows the positions of polymorphic markers and key recombination events in affected members (filled arrows) 
and unaffected members (open arrows) of families showing linkage of TSC to 9q34; the approximate positions 
of Mlu I (M) sites (with sites that partially cut in genomic DNA shown in parentheses) and of probes used to 
screen the region for rearrangements in patients with TSC by means of pulsed-field gel electrophoresis 
(orange boxes); genes previously mapped to the TSCl candidate region (blue boxes); novel cDNAs isolated 
from the region (red boxes); ESTs mapped to the region (green); and additional putative genes predicted by 
GRAIL analysis of genomic sequence (light blue boxes). There was a single 20-kb gap in the contig near 
D9S1793. The map of the TSC1 gene (bottom) shows the 23 exons, of which exons 3 to 23 are coding. 
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Fig. 2. Identification of mutations in TSCl exon 
15. (A) Heteroduplex analysis. Control sample (left 
lane) is followed by 10 samples with a shift. (B) 
Sequence analysis demonstrating 21 05delAAAG 
mutation. The sequence reactions were done in 
antisense orientation, so that reading from the top 
down (b2083 to 21 24 of the normal sequence is 
shown), the allele sequenced on the left has the 
deletion, the middle sequence is a normal allele, 
and the sequence on the right is the heteroduplex 
product with both alleles. (C) In a sporadic case, 
the heteroduplex mobility shift is not present in 
either parent. (D) Segregation of heteroduplex 
mobility shifts in a large family with TSC (left) and 
digestion of amplification products with Mwo I in 
another family (right) demonstrates segregation of 
the 2105delAAAG mutation with the disease. 



The exon with mutations was part of a 
transcriptional unit identified by earlier 
gene discovery efforts (26). The full se- 
quence of the TSCl gene was determined 
by comparison of genomic sequence and 
cDNA clone sequence, including clones ob- 
tained by 5' rapid amplification of cDNA 
ends (RACE). The TSCl gene consists of 
23 exons, of which the last 21 contain 
coding sequence and the second is altema- 
tively spliced (Fig. 1, bottom). The open 
reading frame (ORF) of the longest tran- 
script begins at nucleotide 162, and the 
likely initiator ATG codon occurs at nucle- 
otide 222. The first stop codon is at nucle- 
otide 3738, leaving a 4.5-kb 3' untranslated 
region. Northem (RNA) blot analysis with 
a coding region probe (nucleotides 1100 to 
2100) revealed a major 8.6-kb transcript 
that was widely expressed and was particu- 
larly abundant in skeletal muscle (Fig. 3). 

The predicted TSCl protein, which we 
call hamartin, consists of 1164 amino acids 
with a calculated mass of 130 kD (Fig. 4). 
The protein is generally hydrophilic and 
has a single potential transmembrane do- 
main at amino acids 127 to 144 (27) as well 
as a probable 266-amino acid coiled-coil 
region beginning at position 730 (28). Da- 
tabase searches identified a possible ho- 
molog of TSCl in the yeast Schizosaccharo- 
myces pombe (GenBank accession number 
Q09778), a hypothetical 103-kD protein, 
but there were no strong matches with ver- 
tebrate proteins (29). 

Because the initial screen identified a high 
frequency of mutations in exon 15, we studied 
this exon in a large sample of patients. Muta- 
tions in exon 15 [559 base pairs (bp), 16% 
coding region] were identified in 8 of 55 
(15%) familial DNA samples with linkage to 
the TSCl region, and in 15 of 607 (2.5%) 
DNA samples from sporadic patients or fam- 
ilies uninformative for linkage (Table 1). A 

screen for mutations in all coding exons in 20 
familial cases and 152 sporadic patients yield- 
ed eight mutations in each group (40% and 
5%, respectively). In total, 19 mutations were 
found in coding exons other than exon 15. 
No mutations have been detected thus far in 
exons 3 to 6, 8, 11 to 14, 16, or 21 to 23. Of 
the 32 distinct mutations seen in 42 different 
patients or families, five were recurrent. Thir- 
ty were predicted to be truncating, one was a 
possible missense mutation, and one was a 

splice site mutation. Analysis of a renal cell 
carcinoma from a TSC patient with germline 
mutation 2105delAAAG revealed a somatic 
mutation, 1957delG, in the wild-type TSCl 
allele (30). A giant cell astrocytoma from 
another patient with germline mutation 
1942delGGinsTTGA had retained the mu- 
tant allele but lost the wild-type allele. 

Our results support the hypothesis that 
TSCl functions as a tumor suppressor gene. 
First, the majority of mutations are likely to 

Fig. 4. Predicted amino acid MAQQAWGEL LAMLDSPMLG VRDDVTAVEK ENLNSDRGPM LWLVDYYL ETSSQPRLHI 60 

Sequence of the TSC~ pro- LTTLQEPHDK HLWRINEW GRAATRLSIL SLLGHVIRLQ PSWIMKLSQA PLLPSLLKCL 120 
RMDTDVYYLT TOVLVLITML PMIEQSGKQH LWEEDIEGR LSSWCLKKFG HV-VHL 180 

tein, hamartin. A potential ~IASVYALFHR LYGMYPCNW SELRSHYSMK ENLETEEEW KPMMEHVRIH PELVTGSRDH 240 
transmembrane domain EWPRRWKRL ETHDWIECA KISLDPTEAS YEDGYSVSHQ ISARFPHRSA DVTTSPYADT 300 

QNSYGCATST PYSTSRLMLL NMEGQLPQTL SSPSTRLITE PPQATLWSPS MVCGMTTPPT 360 
no acids 127 to 144) and a SPONVPPDLS HPYSKVEGTT ADDKGTPLGT PATSPPPAPL MSDDWHIS LWA-PPR 420 -. - . . . . . - . 
coiled-coil domain (amino ac- KEERMDSARP CLHRQHHLLN DRGSEEPPGS KGSVTLSDLP GELGDLASEE DSIEKDKEBA 480 

ids 730 to 965) are un- AISRELSEIT TAKAEPWPR GGEDSPEYRD SLPOSQRKTH SAASSSQOAS VNPEPLHSSL 540 
DKLGPDTPKQ AETPIDLPCG SADESPAGDR ECQTSLETSI PTPSPCKIPP PTRVGPOSGQ 600 

derlined. The TSC1 genomic PPPYDHLFEV ALPKTAHHFV IRKTEELLKK AKGNTEEDGV PSTSPMEVLD R L I ~ A H  660 
sequence and the c D N ~  SKELNKLPLP SKSVDWTHEG GSPPSDEIRT LRDQLLLLHN QLLYERFKRQ QHALRNRRLL 720 

R K V I W  EWAUBUX KLOEWIOMW YNOMGORM MYTKLHSOlR 780 
sequence have been deposit- 0- N ~ ~ ~ E L ~ T K L  RIELK~(ANNK VCHT~LLLSO VSOKLSNS~S 840 

ed in GenBank (accession 
numbers AC002096 and 
AF013168, resrxxtivelv). 

VOOOM6FLNROLLVLGEVNELYLEOLONKHSDTTKGVGMMKPrAYRKELGKNRSHVLOOTO 900 
R L D T S O K R l L E L E S H W ( K D - E m - -  960 
BILUYGRLE KDGLLKKLEE EKAEAAEAAE ERLDCCNDGC SDSMVGHNEE WGHNGETKT 1020 
PRPSSARGSS GSRGGGGSSS SSSELSTPEK PPHQRAGPFS SRWETTMGEA SASIPWGS 1080 
LPSSKSELGM KARELFRNKS ESQCDEDGMT SSLSESLKTE LGKDLGVEAK IPLNLDGPHP 1140 
SPPTPDSVGQ LHIMDYNETH HERS 1164 

Table 1. All mutations found in TSC1. Both heteroduplex and single-strand conformation polymor- 
phism (33) gels were used to search for mutations after the initial screening. F, familial; S, sporadic. 

Number of patients 

Exon screened' Mutations Patients 

F S 

Fig. 3. Northern blot analysis of TSCl expression. 
Each lane contained 2 kg of polyadenylated RNA 
from adult human organs, and the probe consisted 
of base pairs 11 00 to 21 00 of the TSCl gene. 
Minor hybridization signals of size 4 and 2.5 kb are 
also seen. 

*Families are defined as those with linkage to the TSC1 region and negative linkage to the TSC2 region. Sporadics 
include both sporadic cases and cases from families without linkage information. Exon structure and primer information 
are provided at http://expmed.bwh.ha~ard.edu/projects/tsc/. 
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inactivate protein function. Second, in two 
TSC-associated tumors we have shown that 
loss of the wild-type TSC I allele occurred 
through LOH or intragenic somatic mutation. 
The paucity of LOH for the TSC I region 
found in patient lesions (13, 14) may reflect 
the same mutational spectrum seen in the 
germline of TSC patients with a high frequen
cy of small mutations causing inactivation of 
the second allele. It is also possible that there 
is a greater frequency of TSC2- versus TSC1-
associated disease among the sporadic cases 
providing the lesions analyzed. This is suggest
ed by the low frequency of mutations we have 
detected in TSC1 in sporadic cases. However, 
in families suitable for linkage analysis, about 
half show linkage to TSC I and half to TSC2 
(16,31). 

The mutations observed in TSC1 consist 
of small deletions, small insertions, and point 
mutations. No genomic deletions or rear
rangements in TSC I were detected by South
ern (DNA) blot analysis of 250 TSC patients. 
This restricted mutational spectrum may re
flect an intrinsic tendency for this type of 
mutation in this region of the genome. Alter
natively, it may reflect selection against more 
disruptive mutations such as large deletions, 
which would involve neighboring genes. 

The mechanism by which loss of hamartin 
expression produces TSC lesions is unknown. 
It is likely that hamartin and tuberin partici
pate in the same pathway of cellular growth 
control, because the clinical features of TSC 1 
and TSC2 disease are so similar (31). Tuberin 
has modest GAP activity for both rapl and 
rab5, members of the Ras superfamily of small 
GTPases. The physiological function of the 
rapl GTPase is not understood, whereas rab5 
is thought to be involved in early endosomal 
transport. Tuberin-deficient rat embryo fibro
blasts display increased endocytosis, which 
suggests that the rab5 interaction of tuberin 
has physiological relevance (32). It is unclear 
how a deficiency of GAP activity for rapl or 
rab5, if that is the critical function of tuberin, 
leads to hamartoma development. The se
quence homology of hamartin to a putative S. 
pombe protein suggests that it may participate 
in an evolutionary conserved pathway of 
eukaryotic cell growth regulation. The iden
tification of TSC I will enable analysis of the 
functions of both hamartin and tuberin, and 
may permit further insight into the molecular 
pathogenesis of TSC. 
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