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Optical spectroscopy of conjugated molecules is described by using collective electronic 
coordinates, which represent the joint dynamics of electron-hole pairs. The approach 
relates the optical signals directly to the dynamics of charges and bond orders (electronic 
coherences) induced by the radiation field and uses only ground-state information, thus 
avoiding the explicit calculation of excited molecular states. The resulting real-space 
picture is remin!scent of the normal-mode analysis of molecular vibrations and offers a 
unified framework for the treatment of other types of systems including semiconductor 
nanostructures and biological complexes. Spatial coherence displayed in two-dimen- 
sional plots of the five electronic normal modes that dominate the optical response of 
poly(p-phenylene vinylene) oligomers with up to 50 repeat units (398 carbon atoms) in 
the 1.5- to 8-electronvolt frequency range suggests a saturation to bulk behavior at about 
five repeat units. 

Spectroscopy allows chemists and physicists 
to probe of the dynamics of vibrations and 
electronic excitations within molecules and 
solids. The theoretical models used for inter- 
preting molecular spectra compared with 
those for extended solids are usually quite 
different. and certain svstems. such as clus- 
ters and polymers, are kot readily treated by 
either of these limiting cases. There is Dar- - 
titular interest to understand the optical 
spectra of large polymers, which are extend- 
ed conjugated molecules such as poly(p-phe- 
nylene vinylene) (PPV) oligomers (Fig. 1) 
that have interesting optical applications. 

Electronic and optical properties of 
small conjugated chains can be interpreted 
molecularly in terms of their global many- 
electron eigenstates obtained from quan- 
tum-chemistry methods (1 ,  2). Large poly- 
mers also can be analyzed with semi- 
conductor band theories that focus on the 
dynamics of electron-hole pairs (3). The 
size-scaling of the optical response and the 
transition between these two regimes has 
not been fullv ex~lored for the lack of ade- 
quate theoreticalhethods. It is very hard to 
obtain the complete set of eigenstates, 
which carry considerably more information 
than necessary for the calculation of 
spectra, for large molecules with strong 
electron correlations (as occurs in conjugat- 
ed chains). Band theories, however, neglect 
electronic correlation effects, and because 
they are formulated in momentum (k)  
space, they do not lend themselves easily to 
real-space chemical intuition. 

The collective-electronic oscillator 
(CEO) representation (4, 5) provides a hy- 

brid formulation that bridges the gap be- 
tween the chemical and semiconductor 
points of view. This model uses an electron- 
hole picture in real space, overcomes many 
of the difficulties associated with the former 
approaches, and provides a physically intu- 
itive link between electronic structure and 
optical properties, that is, the optical prop- 
erties are related directly to the motions of 
charges and electronic coherences, thus 
avoiding the need to calculate the global 
(many-electron) eigenstates. The electronic 
oscillators, unlike the electronic orbitals, 
are directly observable spectroscopically 
(4-6). Despite the quantum nature of elec- 
tronic motions, the collective oscillators are 
classical (7, 8), which relates well with 
chemical intuition. Typically only a few 
oscillators dominate the response, greatly 
simplifying the theoretical description. A 
real-space picture of linear absorption that 
pinpoints the origin of each optical transi- 
tion is obtained by two-dimensional (2D) 
display of the electronic mode matrices. 
Our results provide a unified description of 
the optical response of small and large mol- 
ecules as well as bulk materials. 

The CEO Approach 

The oscillator picture that we use here is 
more familiar in the analysis of vibrational 
spectroscopy (9), in which the coherent mo- 
tions of various atoms with well-defined am- 
plitude and phase relations are represented 
by collective nuclear coordinates-the nor- 
mal modes. The normal modes provide a 
natural coordinate system and allow an al- 

positions of the 3N nuclear displacements. 
Extending this concept to electronic mo- 
tions is not straightforward, however, be- 
cause spectroscopic observables are highly 
averaged, and following the complete many- 
electron dvnamics is neither feasible nor 
desirable.   or this reason, the oscillator 
picture is normally not used for electronic 
spectroscopy. 

In this article we show how a CEO 
picture can be rigorously established for op- 
tical excitations of conjugated molecules. 
We demonstrate how a natural set of elec- 
tronic coordinates can be constructed by 
using the reduced single-electron density 
matrix (4, 5, 11) and how it offers tremen- 
dous conce~tual as well as com~utational 
advantages. Consider a conjugated mole- 
cule described by a basis set {+,) of N 
atomic orbitals. [For simplicity we use in the 
calculations presented below the Pariser- 
Parr-Pople (PPP) Hamiltonian where each 
carbon atom has a single IT orbital (6, 12). 
N then coincides with the number of car- 
bon atoms.1 The svstem can be described bv 
the Fermi operators c,+ and c, representing 
the creation and annihilation, respectively, 
of an electron in +,. The complete many- 
electron wave function re~resentine the " 

system's ground state will be denoted +g(x), 
x being the com~lete set of electronic co- 
ordinates. The reduced single-electron 
ground-state densitv matrix is then defined 
as the expectation kalue (13) 

(Spin indices have been omitted for brevi- 
ty.) The physical significance of p has been 
recognized since the early days of quantum 
chemistry (14). We first note that 6 is an 
N x N matrix. The density matrix carries 
considerably less information than the com- 
plete many-electron wave function (making 
it much easier to calculate): however. this , , 

information is sufficient to calculate all op- 
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tical properties and develop an intuitive 
physical picture of the optical response. 
[Qg(x) allows us to calculate the expectation 
values of products of arbitrary numbers of cn 
at cn+, whereas only gives the binary 
products, which represent operators that de- 
pend on a single electron, hence its name.] 
P @ thus the quantum analog of the single- 
particle distribution in classical statistical 
mechanics (15). The ground-state density 
matrix Prim may be obtained by using stan- 
dard quantum chemistry packages. Its diag- 
onal elements (n = m) represent the charge 
at the mth atom, whereas the off-diagonal 
elements (n # m) reflect the strength of 
chemical bonding between each pair of at- 
oms and are known as the bond orders. 
Bond order is thus associated with a ~ h a s e  
relation (electronic coherence) between or- 
bitals. The eigenvectors of P known as the 
natural orbitals provide a convenient basis 
set for performing configuration interaction 
calculations and for interpreting chemical 
reactivity (1 6, 17). 

When the molecule is driven by an ex- 
ternal electric field (such as provided by a 
photon in a spectroscopic measurement), its 

wave function (and consequently, the re- 
duced density matrix) becomes time-depen- 
dent, such that p(t) = P + 6p(t). The 
matrix elements 6pnm(t) represent the 
changes induced in the densitv matrix bv 
the electric field. 6pnn(t) is the' net charg; 
induced on the nth atom, whereas 6pnm(t), 
n # m, is a dynamical bond order represent- 
ing the joint amplitude of finding an elec- 
tron on atom m and a hole on atom n. 

Quantum chemistry techniques that cal- 
culate properties such as polarizabilities by 
using the many-body wave functions rapidly 
become more complicated with molecular 
size and are therefore limited to small mol- 
ecules. Furthermore. in most ~ractical 
chemical applications we need much less 
information than is carried bv the com~lete 
eigenstates. This makes it haid to deveiop a 
s im~le  intuitive understanding of various - 
trends. A time-dependent procedure for cal- 
culating 6p(t) directly for a molecule inter- 
acting with an external electric field ~ ( t )  
can be obtained by starting with the Heisen- 
berg equation of motion for cn+cm. This 
equation is not closed, because higher order 
products will show up when the time deriv- 

I "- .- 
- 

Fig. 2. Contour plots of density matrices of a 30-carbon polyacetylene chain. (A) Ground-state density 
matrix p; (B, C, and D) frequency-dependent density matrices 6p(4 at o = 2.5,3.5, and 4.7 eV (496, 
354, and 264 nm) corresponding to the lowest three dominant peaks in the absorption spectrum. The 
axes represent the individual carbon atoms, and the color code is shown in Fig. 4. 

ative is calculated. Writing equations of mo- 
tion for these higher order products will 
yield increasingly higher order products. 
This is the famous hierarchy of many-body 
(classical and quantum) dynamics. To over- 
come this difficulty we need a truncation 
~rocedure. The sim~lest ~rocedure assumes - .  
that the many-body wave function is given 
by a single Slater determinant at all times 
and yields the time-dependent Hartree-Fock 
(TDHF) equations of motion (18): 

The coefficients (A, B, and p)  in these 
equations are readily available and depend 
on the original Hamiltonian and on P 
(which is the essential input in the present 
approach). Figure 2 displays 6 of a linear 
30-atom polyacetylene chain as well as the 
induced density matrix 6p(w) [the Fourier 
transform of 6p(t)] to first order in the 
external field [~(t)], for three frequencies 
corresponding to the lowest peaks in the 
optical absorption. P is almost diagonal; 
only nearest neighbors have significant off- 
diagonal elements. This result is in agree- 
ment with our elementary picture of chem- 
ical bonding. Optical excitations, however, 
induce electronic coherences between at- 
oms that are much farther apart, as is clearly 
seen in Fig. 2, B, C, and D. 

With Eq. 2 the time-dependent density 
matrix (and optical excitations) can be cal- 
culated directly from P. By understanding 
the mechanism for the creation of the co- 
herence, we can develop a new type of 
chemical intuition and relate the optical 
response directly to the motions of charges 
and bond orders. This is an attractive 
alternative to the conventional descrip- 
tion of spectra in terms of transitions 
among eigenstates. Both pictures are cor- 
rect, and for historical reasons, chemical 
intuition is traditionally based on eigen- 
states. However, we argue that the real- 
space picture is much more natural, intu- 
itive, and easier to implement once the 
proper terminology is developed. T o  illus- 
trate this point, consider the variation of 
optical properties such as the electronic 
band gap and, its oscillator strength or the 
magnitude of the off-resonant polarizabil- 
ity with molecular size. These properties 
strongly depend on size for short chains 
and level off at about 20 to 30 double 
bonds, where they attain the bulk values 
(19). It is impossible to visualize this co- 
herence size by examining the molecular 
orbitals. These orbitals are completely de- 
localized, change gradually and continu- 
ously with chain length, and contain no 
signatures of this coherence size. In con- 
trast, by looking at the induced density 
matrix one can immediately note the co- 
herence size associated with its off-diago- 
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nal section. This coherence size, which 
measures how far apart different atoms 
communicate, controls the scaling of op- 
tical properties with size, as will be dem- 
onstrated below. 

A t  this point, we return to the analogy 
with classical molecular vibrations. The  
displacements of nuclear positions from 
their equilibrium values satisfy nonlinear 
eauations of motion resulting from the 

to include only a few modes in the calcula- 
tion. The same is true for the electronic 
normal modes: Only a few dominant modes 
typically determine the spectra, thus greatly 
simplifying the physical picture and reduc- 
ing the computational effort. 

2D Real-Space Analysis of 
Optical Responses 

u 

anharmonic force fields. Infrared and Ra- We  investigated the electronic excitations 
man spectra are usually interpreted by us- of PPV oligomers (Fig. 1) (6,  20-27) and 
ing normal modes obtained by diagonaliz- analyzed their scaling with size. Recent in- 
ing the linear, (harmonic) part of these terest in PPV is connected with its possible 
equations of motion. Normal modes are use as a photoconductor (28, 29), as a 
natural collective coordinates for atomic candidate for electroluminescent devices. or 
displacements. Nonlinear (anharmonic) for optical switches. 
effects can be treated as ~erturbations. In The  a molecular orbitals of PPV have 
complete analogy, Spnm(t) represent the been classified as either localized (I) or 
disulacements of the electronic densitv delocalized id) (26. 28). The  former have 
matrix elements from their equilibrium 
(ground state) values ijnm. The  nonlinear 
TDHF equations are the electronic coun- 
terpart of the classical Newtons' equations 
of motion of nuclear displacements. By 
diagonalizing the linearized TDHF equa- 
tions, we obtain a set of collective elec- 
tronic normal modes. The  induced density 
matrix can then be expanded as a super- 
position of these collective modes in the 
same way that an  atomic nuclear displace- 
ment is a superposition of the vibrational 
normal modes. Each normal mode (elec- 
tronic oscillator) with frequency a, is de- 
scribed by a coordinate Q, and momentum 
P,. Q, and P, are also N X N matrices (5). 
These N2/4 coordinates and momenta al- 
low us to represent the time-dependent 
density matrix in the form (4) 

The  time-dependent coefficients a, and 
b, are obtained by solving the TDHF 
equations. 

The optical polarization is related to the 
charge distribution and may be expressed in 
terms of the diagonal elements of Sp(t). The  
polarization along the e axis is given by 

where q, is the ?: coordinate of the nth atom, 
and e is the electronic charge. 

In the CEO method (4,  5 ) ,  the N2 ma- 
trix elements of Sp(t) are obtained by solv- 
ing the closed nonlinear TDHF equations 
of motion (4). These equations map the 
calculation of the optical response onto the 
dynamics of coupled electronic oscillators 
(analogous to calculating molecular vibra- 
tions), thus avoiding the tedious calculation 
of the global (many-electron) wave func- 
tions. Infrared and Raman spectra are great- 
ly simplifie,d by selection rules that allow us 

an  electron density on  carbon atoms 1, 2, 
4, and 5 (Fig. I ) ,  whereas the latter are 
delocalized over all carbon atoms. The  
experimental absorption spectrum of PPV 
thin film (21 ) shown in Fig. 3 A  (dashed 
line) is typical for other PPV derivatives 
(21,  25, 28). It has a fundamental (d + 
d*) band at 2.5 eV (496 nm) (I) ,  two weak 
peaks at 3.7 eV (335 nm)  (d + d*) (11) 
and 4.8 eV (258 nm) (I -+ d* and d -+ 1*) 
(III), and a strong (1 + 1") band at 6.0 eV 
(207 nm)  (IV). Peak I1 originates from 
electron correlations (26. 28) and is 
missed by HF calculations. The  calculated 
spectrum of PPV(lo) shown in Fig. 3 A  (solid 
line) closely resembles the experimental 
spectrum and has similar features at 2.83 (I), 
3.3 (II), 4.5 (III), and 5.6 eV (IV) (438,376, 
276, and 221 nm). In addition, it shows a 
fifth band centered at 7.0 eV (177 nm) (V). 
The oscillator strengths f, of PPV(lo, are 
shown in Fig. 3A. 

By displaying the dominant oscillators in 
the site representation, we obtain a new 
picture that relates the optical properties 
directly to motions of charges in the system, 
without introducing electronic eigenstates. 
The extent of spatial coherence then pro- 
vides a view of the underlying coherence 
sizes. A 2D plot of p of PPV(lo) is shown in 
Fig. 4A. The coordinate axes represent re- 
peat units along the chain, and the absolute 
values of matrix elements are depicted by 
different colors. Similar to Fig. 2, p is dom- 
inated by the diagonal and near-diagonal 
elements, reflecting the bonds between near- 
est neighbors. A single unit of Fig. 4A on an 
expanded scale is shown in Fig. 4B with the 
atom labeling given in Fig. 1. It reflects 
bond-strength distribution over the benzene 
ring (elements 1 to 6), strong double bond 
(elements 7 and 8), and weaker single bond 
(elements 6 and 7) of the vinylene group. 
This bonding pattern is to be expected from 
the molecular structure. 

We  next examine the coordinates Q, 
and momenta P, of the dominant elec- 
tronic oscillators. Vibrational normal 
modes represent coherent displacements 
of various atoms, and these electronic 
modes represent the dispiacements of the 
electronic density matrix with respect to  
p. The  diagonal elements reflect induced 
charges on  various atoms, whereas the off- 
diagonal elements represent dynamical 
fluctuations of interatomic chemical 
bonding (4-6). Our calculations show 
that the absorption is dominated by five 
oscillators denoted I to  V. The  coordinate 
and momentum eigenvectors of the oscil- 
lator responsible for the lowest absorption 
peak I of PPV(,,, are shown in Fig. 4, C 
and D. The  same auantities for the second 
oscillator corresponding to peak I1 are 
shown in Fig. 4, F and G. Despite the 
different structures of these electronic 
modes, the delocalization pattern of the 
off-diagonal elements representing elec- 
tronic coherence between different atoms 
is similar. Both modes are delocalized and 
can be viewed as d + d* transitions. Q, 
and P, clearly show that the weak coher- 
ences between the phenylene ring of the 
ith repeat unit, and the vinylene group of 
the i + 1-st repeat unit are enhanced by 
optical excitation. In addition, a weak 
dynamical coherence develops between 
the ith and the i + 2-nd reDeat units. 
These figures illustrate that finite size ef- 
fects are limited to the terminating repeat 

Fig. 3. (A) Absorption spectrum of PPV(,,, (the 
imaginary part of a Eq. 1 .  Dashed line, experlmen- 
tal absorption of a PPV thin film (24); solid line, 
absorption lineshape of PPV(,?, obtained with 12  
effective modes calculation w~th linewidth T, = 

0.1 eV. The vertical lines represent oscillator 
strengths f v ,  v = 1 ,  KV4 of PPV (,,, obtained by 
the full TDHF. (B) The frequency-dependent in- 
verse participation ratio of the induced density 
matrix. 
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units and that the momenta are more delo- 
calized than the coordinates for a single 
unit. The coherence size, that is, the "width" 
of the momentum density matrix along the 
coordinate axes, where the coherences de- 
crease to 10% of their maximum values, is 
five repeat units. The same modes for a 
longer chain [PPV ] displayed in Fig. 4, E 
and H, are virtuat: identical to those of 
PPV(,, . Therefore, 10 repeat units already 
resemble the infinite chain as far as the 

optical spectrum is concerned. 
The coordinate and momentum of peak 

I11 of PPV,,,, are shown in Fig. 5, A and B. 
This mode is delocalized with a coherence 
size similar to modes I and 11; however, its 
structure along the oligomer chain is very 
different-bonding is weak at the center 
and strong toward the edges. The electronic 
modes are most suitable for investigating 
charge transfer processes and photoconduc- 
tivity (28, 29). The strong local optical 

dipoles along the chain can affect charge 
transfer and electron hopping. Oscillator 
111, which has the strongest optical coher- 
ences induced at the chain ends (see Figs. 
5 A  and 4B), should play an important role 
in effects involving charge separation. 

The coordinates and momenta of the 
high-frequency peaks IV and V of PPV(,,, 
(Fig. 5, D, E, G, and H) are completely 
localized on a single-repeat unit. This be- 
havior is markedly different from polyacety- 

4 - 

2 - 

2 4 6 8 10 2 4 6 8 10 4 8 16 20 

maps; (C) momentum and (D) coordinate of PPV,,,, and (E) coordinate of individual carbon atoms as numbered in Fig. 1. 
PPV,,, of the lowest absorption peak I, (F, G, and H) are the same quan- 

1 
Fig. 4. Contour plots of density matrices. (A) p of PPV,,,; (B) magnified tities as in (C) to (E), but for the second absorption peak (11). The axis labels 
region of (A) representing the single unit of polymer chain and the color represent the repeat units, except in (B) where the axes represent the 
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lene, where the electronic coherence size 
increases monotonically for the higher fre- 
quency modes (Fig. 2) (5). The coordinates 
of these modes for a single PPV unit on an 
expanded scale are shown in Fig. 5, F and I. 
For peak IV the optically induced coher- 
ences only involve the phenylene ring car- 
bon atoms 1, 2, 4, and 5 (Fig. I), in agree- 
ment with the results obtained in (26, 28). 
The oscillator responsible for peak IV rep- 
resents several nearly degenerate localized 
oscillators (Fig. 3A). The high-frequency 

peak V predicted by our calculations lies 
beyond the experimentally studied frequen- 
cy range. It corresponds to localized and 
weakly delocalized transitions involving the 
vinylene group atoms 7 and 8, and the 
phenylene ring atoms 3 and 6. A weak 
coherence between the vinylene groups of 
neighboring repeat units is observed as well. 

Even though the CEO approach is ei- 
genstate-free, it is instructive to establish its 
connection to the more traditional eigen- 
state representation. The vth oscillator rep- 

resents the optical transition between the 
ground state +, and the vth excited state 
+,. The matrices representing the coordi- 
nate Q, and momentum P, are given by 

+ 
( Q u L  = (+uIcm'cnI+g) + (+g+bm cnI+u), 
(Pu)mn = (+uIcm+cnIJIg) - (+gIcm cnI+u). Qu 
and P, thus carry considerably reduced in- 
formation about the global eigenstates I+,). 
A different perspective on these modes is 
obtained by expanding them in the molec- 
ular orbital representation using a basis set 
of pair molecular orbital pairs. Let us denote 

Fig. 5. Contour plots of density matrices. (A) Momentum and (B) coordinate of polymer chain. (0, H, and I) The same quantities as in (B) to (F) but for 
in the real-space and (C) coordinate in the molecular orbital (MO) represen- absorption peak V. The axes of (A), (B), (D), (E), (G), and (H) represent the 
tation of peak Ill of PPV,,,. (D) Momentum and (E) coordinate of PW(,,,, for repeat units of polymer chain. The axes of (C) denote the molecular orbitals. 
absorption peak IV, and (F) magnified area of (E) representing the single unit The axes in (F) and (I) represent the number of carbon atoms. 
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the creation and annihilation operator for 
the ith molecular orbital as c,+ and ci, re- 
spectively. We then have 

N214 

Q, = 2 a ~ J ( ~ i t ~ I  + c:ci) (5 
] 

lecular orbitals contribute to our five dom- 
inant electronic modes, we have introduced 
the following two quantities 

tribute to this transition. The strongest or- 
bitals can be identified as either delocalized 
or locallzed, and mode I11 corresponds to 1 
-+ d* and d -+ 1" transltlons. Our calcula- 
tlons further show that the frequencles of 
modes I, 11, and 111 are red-sh~fted and 
gradually saturate wlth lncreaslng cham 
length, whereas the frequencles of modes IV 
and V are not affected by slze. These find- 
lngs are consistent wlth the delocallzed and 
locallzed nature of the two groups of modes 
respectively as displayed m Flgs 4 and 5. 

1 
RV(j) = E[a,",lZ and P" = - CL,J[a:J12 

where i runs over initially unoccupied or- 
bitals (particles) and j denotes occupied 
orbitals (holes) (Fig. 6A). The coefficients, 
a normalized as C,,] 1 a& 1 = 1, represent the 
contribution of the j -+ i transition to the 
vth oscillator. Note that the indices n. m 

where i, j = 1, . . . , N/2, and v = I, 11, . . . , 
V. R"(j) represents the total contribution of 
the jth molecular orbital to all orbital pairs 
appearing in the vth oscillator. RV(j)  for the 
five dominant oscillators in PPV(,,, are dis- 
played in Fig. 6B. R1(j) is relatively localized 
in the vicinity of the HOMO-LUMO tran- 
sition (between the highest occu~ied and 

used earlier represent localized atomic or- 
bitals whereas i, i denote delocalized molec- 

Discussion and Other 
Applications , , 

ular orbitals. To illustrate how various mo- 
The main reason for the success of the CEO 

u 

lowest unoccupied orbitals), whereas addi- 
tional  airs of orbitals contribute to the 

representation is the following. An optical 
excitation moves an electron from some 

higher modes. The inverse participation ra- 
tio P" measures the number of orbital  airs 

occupied orbital to an unoccupied orbital, 
thereby creating an electron-hole pair. The 
natural description of the optical response 
should therefore be based on following the 

that contribute significantly to the vth oscil- 
lator. In the absence of electronic correla- 
tions, each oscillator represents a single tran- 
sition between an occu~ied and an unoccu- 

- 
simultaneous and coupled dynamics of this 
pair; the two indices of the density matrix 
carry precisely this information. Molecular 
eigenstates, however, use a single-particle 
basis set. Correlations are incorporated 
through an extensive configuration interac- 
tion calculation. By working in a space of 
higher dimensionality (the pair) we capture 
the essential physics of the system, and even 
the simplest (TDHF) factorization yields an 
adequate description. In a single-particle 

pied orbital (in the quantum chemistry ter- 
minology) or a single particle-hole pair (in 
the semiconductor terminology) and P" = 1. 
In this case, the oscillator and molecular 
orbital pair descriptions coincide. In a corre- 
lated electronic structure, each mode be- 
comes a linear combination (that is, a wave 
packet) of orbital pairs as represented by Eq. 
5, and Pu increases. Pu is thus a useful mea- 
sure of electronic correlations. The values of 
P' given in Fig. 6B show that the higher 
oscillators are more collective and contain 
gradually increasing numbers of electron- 
hole pair states. The oscillators I11 and V 
corresponding to d + l* transitions have the 
most collective character. Such strongly cor- 
related excitations require extensive config- 
uration-interaction calculations in an eigen- 
states approach. Here they appear naturally 
through the modes. The CEO is most attrac- 
tive when P" is large because in a very effi- 

basis, a much more extensive numerical 
effort is needed. A real-space analysis of 
linear absorption that pinpoints the origin 
of each optical transition is obtained by 
displaying the electronic mode matrices 
graphically. The fact that only a few oscil- 
lators typically dominate the response 
greatly simplifies the theoretical descrip- 
tion. The weak anharmonicities that justify 
the harmonic picture may be attributed to 
the large delocalization size. O n  the other 
hand. in atoms collective excitations have 
been found to converge to local modes rath- 
er than to normal modes (30) .  In semicon- 

cient way it lumps the important effects of 
correlations directly into the observables. ~, 

ductors, the electron-hole pairs are loosely 
bound and form Wannier excitons ( 3 ) .  In 

The collective nature of optical excitations 
I 

Fig. 6. (A) Origin of the collective electronic oscil- 
lators. Each transition between an occupied and 
an unoccupied orbital represents an electron-hole 
oscillator. In a molecule with Ne occupied (elec- 
tron) and N, unoccupied (hole) orbitals we have 
altogether Ne x N,, oscillators. For a system with 
a filled valence and empty conduction band de- 
scribed by a "minimal basis set," Ne = N, = N/2, 
and the number of oscillators is N "4. The collec- 
tive oscillators Q, can be represented as super- 
positions of the electron-hole oscillators (see Eq. 
7). (B) The molecular orbital contributions and the 
inverse participation ratios of orbital pairs corre- 
sponding to the five dominant modes of PPV(,,, 
absorption. The inverse participation ratio Pv 
measures the effective number of electron-hole 
pairs contributing to a given collective oscillator. 

at different frequencies can be analyzed by ~. 
molecular aggregates, each pair is tightly 
bound and can be considered as a single 
particle (Frenkel exciton) (31, 32). Conju- 
gated polymers are intermediate between 
these two extremes, and the collective os- 
cillators in conjugated polymers can be 
viewed as charge-transfer excitons. The 
CEO thus offers a unified descri~tion of 

expanding the induced density matrix in 
molecular orbitals 6p(o) = Zij aij(w)(ci+cj 
+ cj+ci). We can then define a frequency- 
dependent participation ratio P(o)  by re- 
placing a; with aij(w) in Eq. 6. (A normal- 
ization Cijla, .(o)l = 1 is assumed). P(w) 
displayed in Fig. 2B is a weighted average of 
the participation ratios P' of the contribut- 

different materials and allows a direct com- 
parison of their optical properties (33). 
Also, one can go beyond the PPP Hamilto- 
nian and the TDHF a~~roximat ion and 

ing electronic oscillators. 
We have used the molecular orbital reD- 

resentation to analyze the nature of mode 
111. Its coordinate in the molecular orbital 
representation is shown in Fig. 4C. The 
figure clearly shows that only a few molec- 
ular orbitals close to HOMO-LUMO con- 

. . 
include additional variables and use a dif- 
ferent ansatz for the wave function (34). . . 
Technically the calculation of optical prop- 
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erties with summation over states is also 
unified and universal. However, very differ- 
ent approximate schemes and terminologies 
are usually used in the calculation of the 
eigenstates of various systems, prohibiting a 
clear comparison and obscuring the origin 
of differences. The electronic oscillator ~ i c -  
ture applies to all materials by simply 
changing parameters (such as the electron 
hole mass, the Coulomb interaction, and 
the hopping matrix elements) (35). 

We next review the computational advan- 
tages of the electronic oscillator approach. 
The sum-only sutes method becomes rapidly 
more expensive'with molecular size. Both cal- 
culating the eigenstates and performing the 
necessary summations over them are intracta- 
ble for large systems. Knowing the complete 
set of eigenstates allows the calculation of any 
optical response including to strong fields. 
This is therefore an "all or nothing" approach. 
The oscillator approach carries less informa- 
tion but for considerably less effort. Compu- 
tational time of configuration interaction cal- 
culations scales as N6; the CEO procedure 
scales only as N2. Our results allow the inter- 
pretation of the most interesting crossover 
reeion toward the bulk. - 

The significance of the oscillator pic- 
ture is even more ~ronounced when non- 
linear optical properties are calculated (4,  
5). Interference effects in the sum-over- 
states approach result in an almost com- 
plete cancellation of large positive and 
negative contributions to optical suscepti- 
bilities (36, 37), which limits the accuracy 
and makes approximate calculations dan- 
gerous (because innocent approximations 
may lead to huge errors). One conse- 
auence of this is that individual terms do 
not have the correct scaling with size. The 
latter is onlv obtained once all of the 
terms are carefully combined. In the oscil- 
lator ~ i c t u r e  these cancellations are built 
in from the start and each separate con- 
tribution to the susceptibility scales prop- 
erly. The present discussion focuses on the 
resonant response. However, the real- 
space approach has been shown to provide 
an adequate description of the scaling and 
saturation of off-resonant linear and non- 
linear polarizabilities (4,  5). 

We further note that by treating the 
electronic degrees of freedom as oscillators 
we can couple them more naturally to nu- 
clear degrees of freedom, which constitute 
another set of oscillators. The incorporation 
of nuclear notions thus becomes much more 
straightforward compared with the eigen- 
,state representation and lends itself more 
easily to semiclassical approximations. 

The oscillator approach allows us to de- 
:lop a natural framework for the interpre- 
:ion and the design of molecules with 
cific properties. Instead of asking which 

of the many-electron states are most rele- 
vant, we can explore how different regions 
of the molecule couple and affect each oth- 
er. We can translate Sp(t) into a nonlocal 
response function a,,(t), which shows how 
the interaction with a field at point n affects 
the polarization at point m (38). The total 
polarizability is given by summing this 
quantity over n and m a(t)  = C,, a,,(t). 
The nonlocal character of the response is 
intimatelv connected with the electronic 
coherenck of the induced density matrix. 
One can then address directlv the effects of 
donor-acceptor substitutions and geometry. 

Electronic motions may now be probed 
directly on the femtosecond time scale and 
the nanometer length scale by nonlinear 
spectroscopic techniques. This has been re- 
cently demonstrated in semiconductor 
quantum wells (39), single-molecule spec- 
troscopy (40-42), and Rydberg atoms (43). 
The CEO approach should allow us to an- 
alyze the temporal and spatial microscopic 
dynamics underlying energy and electron 
transfer processes in substituted conjugated 
molecules by using real-space wave packets 
representing the single-electron density ma- 
trix. A physical picture for coherent versus 
incoherent electron transfer processes can 
then be develo~ed in terms of off-diaeonal - 
or diagonal pathways, respectively, of the 
electronic density matrix. 

The CEO is conceptually similar to den- 
sitv functional theorv, which aims at calcu- 
lating the ground staie with an energy func- 
tion that depends only on the charge den- 
sity, that is, the diagonal elements of the 
densitv matrix in a localized basis (44). The . . 
CEO is a natural extension of density func- 
tional theorv that includes the electronic 
coherences contained in off-diagonal ele- 
ments. These carry the key information 
about electronic excitations and allow the 
calculation of spectra with only ground- 
state information. 
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