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Distance-Dependent Electron Transfer
in DNA Hairpins

Frederick D. Lewis,* Taifeng Wu, Yifan Zhang,
Robert L. Letsinger, Scott R. Greenfield,
Michael R. Wasielewski

The distance dependence of photoinduced electron transfer in duplex DNA was deter-
mined for a family of synthetic DNA hairpins in which a stilbene dicarboxamide forms a
bridge connecting two oligonucleotide arms. Investigation of the fluorescence and tran-
sient absorption spectra of these hairpins established that no photoinduced electron
transfer occurs for a hairpin that has six deoxyadenosine-deoxythymidine base pairs.
However, the introduction of a single deoxyguanosine-deoxycytidine base pair resulted
in distance-dependent fluorescence quenching and the formation of the stilbene anion
radical. Kinetic analysis suggests that duplex DNA is somewhat more effective than
proteins as a medium for electron transfer but that it does not function as a molecular

wire.

The occurrence of long-range electron
transfer (ET) in duplex DNA remains con-
troversial (I). Does the 1 system of stacked
base pairs in B-form DNA function as a
molecular wire or as an insulator? Barton
and co-workers (2-5) have reported several
lines of evidence in support of efficient
long-range ET involving an electronically
excited intercalated metal complex and ei-
ther a second intercalated metal complex or
a “natural” electron donor such as guanine
or thymine dimer. The observation of effi-
cient fluorescence quenching in systems
with randomly intercalated metal complex-
es (2) and a synthetic 15-base pair duplex
in which a donor complex was tethered to
the 5' end of one oligomer and an acceptor
complex was tethered to the 5 end of its
complement (3) was attributed to the oc-
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currence of long-range ET. This interpreta-
tion has recently been questioned on both
experimental (6-8) and theoretical (9)
grounds. Current commentaries on this
controversy have pointed out the need to
determine systematically the dependence of
the ET rate constant on the distance sepa-
rating the donor and acceptor in a series of
structurally  well-defined supramolecular
systems in which the ET process can be
directly monitored (1).

We report here the results of our inves-
tigation of the distance dependence of the
photoinduced ET in a family of synthetic
DNA hairpins in which a stilbenedicarbox-
amide forms a bridge connecting two oligo-
nucleotide arms. One of our laboratories
previously described the synthesis of ther-
modynamically stable stilbene-containing
hairpins with stems consisting of three or
more dA-dT or dG-dC base pairs (10).
Hairpins with dA-dT stems are fluorescent,
whereas hairpins with dG-dC stems are
nonfluorescent. Photoinduced ET from
guanine to the stilbene singlet state pro-
vides a plausible but untested mechanism
for fluorescence quenching. Because the
transient absorption spectra of both the stil-
bene singlet state (11) and its anion radical
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Fig. 1. Formulas of DNA hairpins containing stilbenedicarboxamide bridges and of the model compounds DMS and DAS. Me, methyl.

(12) are well characterized and have large
extinction coefficients, investigation of ET
in these systems is feasible. These observa-
tions encouraged us to prepare a family of
stilbene-bridged hairpins (Fig. 1) in which
the parent hairpin dT¢-St-dAg (St, stil-
bene) is modified by the introduction of a
single dG-dC base pair at different positions
"relative to the stilbene bridge (designated as

nGC, where n is the number of dA-dT base

pairs separating the stilbene bridge from the
~ dG-dC base pair). Investigation of the flu-
orescence and transient absorption spectra
of these hairpins establishes that no photo-
induced ET occurs for the parent dT¢-St-
dAg. However, introduction of a dG-dC
base pair results in distance-dependent flu-

orescence quenching and the formation of.

the stilbene anion radical. Kinetic analysis
suggests that duplex DNA is somewhat
more effective than proteins or saturated
hydrocarbons as a medium for ET but that it
does not function as a molecular wire.
Molecular modeling of dT¢-St-dAg and
0GC to 4GC indicates that they can adopt
low-energy conformations in which the

Fig. 2. MM2-minimized structure for the hairpin
4GC. The stilbenedicarboxamide bridge is shown
in green at the top of the structure, and the gua-
nine is shown near the bottom of the structure in
magenta.
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base pairs form a B-form double helix with
the stilbene located above the adjacent base
pair as shown for 4GC in Fig. 2 (13). The
distance between stilbene and guanine can
be readily calculated from either the models
or the average m-stacking distance of 3.5 A.
The face-to-face geometry adopted by stil-
bene and the neighboring base pair is anal-
ogous to that proposed for aromatic hydro-
carbons in a “dangling” position at the end
of a base-paired duplex (14).

The stilbene-bridged hairpins 0GC to
4GC were synthesized by conventional
phosphoramidite chemistry and purified as
previously described for dT4-St-dAg (10).
All of the hairpins displayed two absorption
bands with maxima at 334 and 260 nm, the
former due exclusively to stilbene and the
latter due to the nucleobases and, to a lesser
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0.0
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: il
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0O O OO0 O =
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550 600 650 700 750
Wavelength (nm)

Fig. 3. Transient absorption spectra obtained
after a 300-fs excitation at 340 nm; spectra are
normalized at their maxima. (A) DMS (dashed
line) after 2 ps and DAS (solid line) after 10 ps in
THF solution. (B) dTg-St-dAg (dashed line) after
10 ps and OGC (solid line) after 2 ps in aqueous
solution. (C) 2GC after 2 ps (dashed line) and 1
ns (solid line) in aqueous solution. AA is the
change in absorption.

degree, stilbene. Thermal dissociation pro-
files monitored at 260 nm for the hairpins
indicated that they all have melting tem- .
peratures >75°C. No hypochromism was
observed for the 334-nm stilbene band. Ex-
citation of the hairpins in their long-wave-
length absorption band resulted in the ob-
servation of fluorescence with maxima at
386 nm, which is characteristic of the stil-
benedicarboxamide chromophore (10, 15).
Fluorescence quantum yields (®;) for the
stilbene-containing hairpins and for the
model N,N-dimethylstilbenedicarboxamide
(DMS) are reported in Table 1. The hairpin
0GC is very weakly fluorescent, but the
fluorescence intensity increases as the sep-
aration between the stilbene chromophore
and the dG-dC base pair increases. The
fluorescence decay times for dTs-St-dAg
and 2GC to 4GC are reported in Table 1
(16). Fluorescence decay times for DMS,
0GC, and 1GC are all too short to be
measured with our apparatus (<0.3 ns).
The transient absorption spectra of the
stilbene-bridged hairpins were measured
with a femtosecond-amplified Ti-sapphire—
based laser system that has been described
previously (17). A ~300-fs, 340-nm laser
pulse was used to excite the samples, and a
white-light probe pulse of somewhat shorter
duration was used to monitor the spectra as
a function of time. As models for the stil-
benedicarboxamide singlet state and its an-
ion radical, we used DMS and dianilino-
stilbene (DAS), respectively (Fig. 1). DAS
is very weakly fluorescent, in accord with
the anticipated occurrence of exergonic in-
tramolecular ET from the tertiary aniline to
the stilbene singlet state (18). The transient
absorption spectra of DMS and DAS ob-
tained at short delay times after 340-nm
excitation in tetrahydrofuran (THF) solu-
tion are shown in Fig. 3A. These spectra
have similar maxima (575 nm), as is com-
monly the case for the singlet states and
anion radicals of planar aromatics. Fortu-
nately, the spectra differ in band shape, that
of DMS being broader and having a long-
wavelength tail. The 575-nm band of DAS
has a short-wavelength shoulder that may
obscure the weaker 480-nm absorption
band of the tertiary aniline cation radical.
In the case of DMS, spectra obtained in
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THF, ethanol, and a 1:4 ethanol-water
mixture have the same maxima and band
shape. The decay of the DMS singlet state
(monitored at 575 nm) is singly exponen-
tial with a decay time of 42 ps in an etha-
nol-water mixture, similar to that of the
stilbene singlet state in fluid solution (11).
The formation of the anion radical from the
DAS singlet state appears to be complete
within 10 ps (Fig. 3A), as is the case for
related arene—(trimethylene linker)-aniline
systems investigated by Mataga et al. (19).
The decay of the DAS anion radical is
singly exponential with a decay time of 730
ps. Substantially slower charge recombina-
tion versus charge separation has been ob-
served for related systems and attributed to
the much larger energy gap for charge re-
combination (19).

The transient absorption spectra of dT-
St-dA, and 0GC obtained at short decay
times (Fig. 3B) resemble those of the model
compounds DMS and DAS, respectively
(Fig. 3A). The transient absorption spec-
trum of OGC does not change with time (2
to 40 ps); however, 1GC to 4GC and dT,-
St-dA display time-dependent transient
absorption spectra. The normalized spectra
of 2GC (Fig. 3C) resemble that of the
stilbene singlet state at short delay times
and that of the anion radical at long delay
times (Fig. 3A). Similar changes are ob-
served for 1GC and 3GC. Less pronounced
changes are observed in the spectra of 4GC
and dT-St-dA,, which indicates the per-
sistence of the stilbene singlet at long delay
times. The decays of 0GC and 1GC are
biexponential, and the shorter and longer
decay times are attributed to the decay of
the stilbene singlet state and anion radical,
respectively. The decays of 2GC to 4GC
and dT,-St-dAg are more complex, but
decay times for the stilbene singlet can be
assigned that are: consistent with the flu-
orescence decay data (Table 1). Anion
radical decay times are assigned to the
slowest decay components, which in the

case of 3GC and 4GC are too slow to

1013

4
A
»

Rate constant (s™)

10% ) 8 216 20
D-A distance (A)
Fig. 4. Donor-acceptor (D-A) distance depen-
dence of the ET rate constant in DNA hairpins
containing stilbenedicarboxamide bridges.
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measure with our apparatus.

The singlet decay time for dT(-St-dA is
considerably longer than that for the model
compound DMS. The decay time of the
stilbene singlet state in fluid solution is
largely determined by the rate of torsion
about the C=C bond, a process that is tem-
perature- and solvent viscosity—dependent
(11). The long decay time for dT¢-St-dAg is
consistent with a hairpin structure that re-
stricts C=C torsion (Fig. 2), and, in addi-
tion, it indicates that ET quenching of sin-
glet stilbene by neighboring dT-dA base
pairs is not an efficient process. In contrast,
the extensive quenching of stilbene fluores-
cence observed for 0GC and the similarity
of its transient absorption spectrum to that
of the model compound DAS indicate that
quenching of singlet stilbene by a neighbor-
ing dC-dG base pair occurs through a rapid
ET process. The shorter rise and decay
times for the anion radical of 0GC versus
the model DAS (Table 1) are attributed to
the rigid hairpin structure that eliminates
the necessity for conformational change be-
fore charge separation or recombination.

The difference in behavior of neighbor-
ing dC-dG compared with dT-dA base pairs
can be attributed to the lower oxidation
potential of dG versus dA or the pyrimidine
bases dT and dC. Whereas the oxidation
potentials (E°) of the nucleobases have not
been directly measured in neutral aqueous
solution, recent estimates based on pulse
radiolysis data provide values of E® = 1.34
V for guanosine and 1.79 V for adenosine
and greater values for the pyrimidine bases
(20). The reduction potential of the stil-
benedicarboxamide singlet state (I8)
halfway between these values, thus ac-
counting for the observation of efficient
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quenching by dG but not for quenching by
the other nucleobases. Qur failure to detect
the cation radical of dG by transient ab-
sorption is reasonable because its reported
extinction coefficient is lower than those of
N,N-dialkylanilines (21).

Rate constants for photoinduced ET
(k..) can be calculated from the measured

smglet decay times (Table 1) with the use
of

ket = Tn_l - 'TO_1 (1)

where T, is the decay time for dT,-St-dA
and 1, is the decay time for the nGC hair-
pins. Plotting k_, according to

ke = Ae PR (2)

where R is the distance between the stilbene
acceptor and guanine donor, provides Fig. 4.
A similar plot is obtained from kinetic anal-
ysis of the fluorescence quantum yield data.
From the slope of these plots, a value of the
distance dependence of the ET rate constant,
B =064 £ 0.1 A~1 is obtained. This B
value is distinctly greater than that suggested
for DNA by the experiments of Barton and
co-workers (B < 0.2 A™Y) (2, 3) but is
smaller than the values reported by Brun and
Harriman (6) for ET between DNA-interca-
lated organic donors and acceptors (B ~ 0.9

A™Y or for ET in proteins (B = 1.0 to 1.4

A™1) (9). The efficiency of ET in our hair-
pins becomes too small beyond four dA-dT
base pairs to permit its detection by fluores-
cence quenching or transient absorption.
However, this result does not preclude inef-
ficient “leakage” over longer distances,
which might be responsible for the observa-
tion of long-range low-quantum-yield pho-
tooxidation of guanine and thymine dimers
by Barton and co-workers (4, 5).

Table 1. Fluorescence quantum yields and decay times for St singlets and radical anions. See Fig. 1 for
structures. The lack of a decay time value for the DAS singlet indicates that complex short-time kinetics
presumably result from multiple ground-state conformations. Dashes indicate that no anion radical is

formed.
Decay time (ns)
Compound D
Singlet Anion radicalf

DMS 0.16 = 0.02 0.042 = 0.005 -
dT,-St-dAg 0.38 * 0.04 20 =04 -

@2 *0.1)
4GC 0.35 £ 0.04 14 =02 >10

(1.8 *0.1)
3GC 0.26 + 0.03 1.0 =02 >10

14 =01)
2GC 0.14 = 0.02 0.29 +0.03 4.0 =1

05 =01)
1GC 0.04 = 0.01 0.005 = 0.001 0.14 = 0.01
0GC <0.01 0.001 = 0.0002 0.026 = 0.003
DAS <0.01 - 0.73 *=0.05

*Fluorescence quantum yields ®; were determined with 330-nm excitation by the use of phenanthrene as an actinom-

eter [®; = 0.13 in cyclohexane; see (22)].
data or fluorescence decays (values in parentheses).
absorption data.

tSinglet-state decay times were determined from transient absorption
+Anion radical decay times were determined from transient
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Evidence for Interacting Gas Flows and an
Extended Volatile Source Distribution in the
Coma of Comet C/1996 B2 (Hyakutake)

Walter M. Harris,* Michael R. Combi, R. Kent Honeycutt,
Béatrice E. A. Mueller, Frank Scherb

Images of comet C/1996 B2 (Hyakutake) taken during its close approach to Earth show
differences in the distribution of gas and dust in the inner coma and reveal two arc-shaped
molecular resonant emission features. The morphology of these features, as well as the
apparent decoupling gas from dust in the inner coma, suggest that an extended region of
icy grains surrounds the nucleus of Hyakutake and contributes substantially to the pro-
duction of volatiles. Model simulations suggest the same conclusion and indicate that the
brighter arc is explainable by the presence of a trailing condensation of ice-bearing
granules with a rate of volatile production approximately 23 percent of that of the nucleus.

The approach of comet C/1996 B2 (Hya-
kutake) to within 0.102 astronomical
units (AU) (1) of Earth provided ground-
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based observers with an opportunity to
monitor the characteristics of the extreme
inner coma of an active comet. Such close
encounters with comets are relatively rare,
and recent opportunities to study small-
scale (=100 km) structures near comet
nuclei have been limited except for the
IRAS-Araki-Alcock (C/1983d) apparition
and the Giotto and Vega fly-by encoun-
ters with 1P/Halley in 1986 (2-4). We
report on the results of observations per-
formed at the 3.5-m WIYN (5) telescope
on 26 March 1996, using narrow-band
filters (6) to image the structure and evo-
lution of different small-scale gas and dust
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structures within 3.5 arc min (~16,000
km) of Hyakutake’s nucleus over 7 hours.
These images reveal differences in the ra-
dial intensity fall-off and the relative
spherical distributions of gas and dust
emissions in the inner coma, and show a
pair of low-contrast arc-shaped emission
features located antisunward of the nucle-
us (Fig. 1).

Hyakutake was 0.107 AU (I) from
Earth on 26 March, and this corresponds
to 77 km/arc sec, or 15.4 km/pixel in our
images. Observations occurred between
5:15 to 12:45 universal time (UT), which
was slightly longer than the 6-hour, 14-
min rotation period of the nucleus (7). We
alternated imaging sequences between two
filters that isolated either dust at 4850 A
(6) or resonant emission of the [BZZ —
X235+ Av = 0] CN band between 3845
and 3883 A (8). The continuum and CN
images were taken 360 s apart to facilitate
subtraction of dust emission in the CN
filter bandpass. The CN and continuum
sequences were interrupted at 8:10 UT for
an observation of OH [A?S* — X?I1, 0-0;
1-1] emission at wavelengths between
3064 and 3115 A (8). After standard pro-
cessing (9), each image was spatially fil-
tered to emphasize small-scale structures,
including temporally variable jet features
that rotated with the nucleus (10). The
dust emission present in the CN and OH
images was removed by assuming that the
jet features in the filtered images con-
tained only dust within 250 km of the
nucleus (11). The subtraction is then per-
formed using a scaled dust image that re-
moves these jet features.

The surface brightnesses (B,) of the
dust, CN, and OH comae decreased with
projected angular distance (p) from the
nucleus in a manner similar to other com-
ets (12). The radial fall-off in the dust
coma displayed a typical surface brightness
(By...) dependence of By, ~ p~' consis-
tent with scattering of sunlight from opti-
cally thin dust with a number density
(Ny,..) distribution of Ny o« r* around
the nucleus (Fig. 2A) (13) This rate of
decreasing intensity was the same for all
angles from the sunward direction despite
a clear asymmetry in dust production fa-
voring the sunlit hemisphere. Both the
CN (Fig. 2B) and OH images displayed
radial surface brightness (Boy and Boy)
distributions slower than p~!, which is
consistent with model simulations where
these species are created over an extended
region by photodissociation of parent mol-
ecules drifting away from the nucleus (14).

The density of dust in the inner coma
was higher in the sunward-facing hemi-
sphere (Fig. 2A), which agreed with the

spatially filtered images showing discrete
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