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interacting properties of these two proteins 
are intrinsically different. 

To determine if Bax, indeed, was a Dore- 
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forming protein, we assessed whethe; Bax 
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gered no carboxyfluorescein release at con- 
Proteins of the Bcl-2 family are intracellular membrane-associated proteins that regulate centrations up to 360 nM (Fig. 3A). Chan- 
programmed cell death (apoptosis) either positively or negatively by as yet unknown nel formation by both the bacteria toxins 
mechanisms. Bax, a pro-apoptotic member of the Bcl-2 family, was shown to form and Bcl-x is favored by low pH (3). We 
channels in lipid membranes. Bax triggered the release of liposome-encapsulated car- therefore examined the ability of Bax and 
boxyfluorescein at both neutral and acidic pH. At physiological pH, release could be Bcl-2 to form pores in different pH envi- 
blocked by Bcl-2. Bcl-2, in contrast, triggered carboxyfluorescein release at acidic pH ronments. The release of carboxyfluores- 
only. In planar lipid bilayers, Bax formed pH- and voltage-dependent ion-conducting cein induced by 2.5 nM Bax increased in a 
channels. Thus, the pro-apoptotic effects of Bax may be elicited through an intrinsic pH-dependent manner and was eight times 
pore-forming activity that can be antagonized by Bcl-2. greater at pH 4.0 than at pH 7.5 (Fig. 3C). 

In contrast, although Bcl-2 was as efficient 
as Bax at pH 4, the channel-forming ability 
of Bcl-2 decreased at pH 5 and was abro- 

Members of the Bcl-2 family are intracel- suspension of sheep erythrocytes could af- gated at pH 6 (Fig. 3D). Thus, the pore- 
lular, membrane-associated proteins that fect cell integrity. When added to neuronal forming properties of Bax and Bcl-2 are 
regulate apoptosis, or programmed cell cultures at a concentration of 10 yM, Bax different. 
death ( I ) ,  although the mechanisms are was lytic within 3 to 6 hours (Fig. 2A). At  Bcl-2 has been suggested to antagonize 
unknown. Structural studies on Bcl-x, an 5 yM or less the effect of Bax was less the pro-apoptotic function of Bax by block- 
anti-apoptotic protein, revealed structural pronounced, the cytoplasm of the neurons ing Bax activity (rheostat model) (7). The 
analogies to the pore-forming bacterial tox- became granular, and death was delayed, delay seen in Bax-induced neuronal death 
ins, colicins and diphteria toxin (2), and suggesting that below a critical Bax concen- after addition of Bcl-2 supported this model, 
Bcl-x was subsequently shown to have pore- tration, neurons could compensate for the and therefore we tested this hypothesis by 
forming activity in synthetic lipid mem- toxic effects of Bax (Fig. 2B). Addition of studying whether Bcl-2 could inhibit the 
branes (3). Bcl-2, another anti-apoptotic 10 yM Bax together with an equimolar effect of Bax on liposomes at physiological 
family member, was recently shown to form amount of Bcl-2 delayed neuronal lysis by pH. Accordingly, liposomes were first incu- 
pores in lipid membranes (4). We now show -12 hours (n = 2), whereas no effect was bated with Bcl-2 or with a control protein 
that Bax, a pro-apoptotic member of the observed when ERK2 or stathmin proteins (stathmin) before addition of Bax to the 
family, also is able to form pores, but with were added as a control. This result is con- liposome solution. At a Bax:Bcl-2 ratio of 
different properties, and that at physiologi- sistent with an apparent decrease in Bax 1 : 1 the Bax-triggered carboxyfluorescein ef- 
cal pH, Bcl-2 can block almost completely concentration, suggesting neutralization by flux was decreased by 50%, and at a ratio of 
the pore-forming activity of Bax. Bcl-2. Ten micromolar Bax was also able to 1 : 10 the efflux was almost completely in- 

Full-length proteins of the Bcl-2 family lyse red blood cells (Fig. 2D). In contrast, hibited (Fig. 3B). The unrelated control 
are highly insoluble (5). Therefore, we used addition of Bcl-2 had no deleterious effect protein stathmin had no adverse effect on 
recombinant proteins that lack the COOH- on neurons (Fig. 2C) or on red blood cells Bax function (Fig. 3B). The mechanism by 
terminal hydrophobic domain but that nev- (Fig. 2D), suggesting that the membrane- which Bcl-2 inhibits the ability of Bax to 
ertheless retain biological activity (6) (Fig. 
1, A and B). Both Bcl-2 and Bax were 
purified to apparent homogeneity (Fig. 1C). Fig- 1. Characterization and C 
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induce membrane permeability is currently 
unknown. 

The following data support the notion 
that pore-forming activity is an intrinsic 
property of Bax. Five different, highly puri- 
fied preparations of Bax, from either gluta- 
thione-S-transferase (GST)-fused or His- 
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Fig. 2. Lytic effects of Bax on neurons and red 
blood cells. (A) Bax protein (10 pM) was added 
to serum-free medium of sympathetic neurons. 
Three to 6 hours later, neurons began to swell and 
finally lysed (arrow). (B) When 5 pM Bax was add- 
ed under the same conditions, neurons became 
granular and died after 24 hours. (C) Bcl-2 (1 0 pM) 
did not affect neuronal integrity. (D) Bax and Bcl-2 
were added to sheep red blood cells and incubat- 
ed at 37°C with continous shaking, and hemoglo- 
bin release was measured at dierent time points 
(76). 

tagged Bax, all produced similar results. In 
contrast, ERK-2 (extracellular-regulated ki- 
nase), thyroglobulin, stathmin, or SCGlO 
did not show pore-forming activity, nor did 
Bcl-2 at physiological pH. Bax activity was 
antagonized by addition of Bcl-2 (8), 
whereas addition of control proteins had no 
effect. These data support the hypothesis 
that pore-forming activity is intrinsic to 
Bax and is not due to contaminants in the 
Bax ~re~arations. . . 

Pore formation by the Bax protein was 
further investieated and characterized elec- " 
trophysiologically with planar lipid bilayers 
(Fig. 4). Currents were measured in bilayers 
(2 mm2) separating symmetrical or asym- 
metrical salt solutions into which Bax was 
added at concentrations between 5 and 500 
nM. Within 10 min to 1 hour after addition 
of Bax, or alternatively after membrane for- 
mation in solution containing Bax, an in- 
crease in membrane conductance (g,) was 
consistently observed in 17 experiments 
performed at pH 7 and in three experiments 
performed at pH 4. At pH 7, we observed 

Fig. 3. Release of liposome- = 
encapsulated carboxyfluo- s A ImnM 3 s B 
rescein (1 7). (A) Fluores- 2 2000 2 2000 
cence was measured every 

excitation at 488 nm and 2 
emission at 520 nm. In each ~ B C W  

test, 20 p1 of liposomes con- B C C ~  
3 0 200 400 600 taining 20 mM carboxyfluo- t '0 200 400 600 

rescein was diluted in 1 ml of Time (s) Time (s) 
PBS (pH 7.5), and 5 pI of 
purified protein was added 80 
at the time indicated by the 
arrow. Incubation was done 
at room temperature. Final x 
Bax concentrations are indi- ck 40 

cated for each curve. Bcl-2 i 20 
was tested at 70 nM. Each 
curve was normalized by 
subtraction of the initial fluo- 0 200 400 600 
rescence value obtained at Time (s) Time (s) 
time zero. (B) Bcl-2 inhibits 
Bax-induced carboxyfluorescein efflux at pH 7.5. Bcl-2 was first incubated for 15 min at room temper- 
ature with 20 p1 of liposomes in 1 ml of PBS at the indicated concentrations. Bax (70 nM) was then 
added to the solution at the time shown by the arrow. (C and D) Effect of pH on Bax- and Bcl-2-induced 
carboxyfluorescein efflux. Measurements were performed in 5 mM sodium citrate, 150 mM NaCl buffers 
at pH 4.0,5.0, and 6.0 and in PBS at pH 7.5. Twenty microliters of the liposomes were diluted into 1 ml 
of the buffers and incubated for different time periods at room temperature with 2.5 nM Bax (C) or Bcl-2 
(D). Background fluorescence was measured in the absence of added protein. Fluorescence measure- 
ments were performed immediately after pH neutralization of the samples by addition of 100 p1 of 1 M 
tris-HCI, pH 7.5 (pH correction was required to eliminate fluorescence quenching at pH < 7.5). The 
fluorescence signal is expressed as percentage of total fluorescence after correction for the back- 
ground. F, fluorescence in the sample; F,, background fluorescence; and F,, total fluorescence as 
measured after addition of Triton X-100. 

elementary channels of 5.6 2 0.2 pS occur- 
ring at early times after exposure of the 
membrane to Bax (observed in three exper- 
iments, Fig. 4A). The openings had a fast 
flickering in the millisecond range, and 
their duration could not be described by a 
single time constant. These small pore 
openings were usually swamped by long 
bursts of larger conductance fluctuations 
between 26 2 7 pS (at 100-Hz bandwidth) 
and a predominant opening of 250 + 25 pS 
with occasional residencies at two main 
sublevels (80 2 25 pS and 180 + 25 pS) 
(Fig. 4B). The mean dwell time (7,) at 
levels above 125 pS was 240 2 20 ms. 
Further superimposed on this activity were 
abrupt changes of g, in multiples of about 
450 pS resulting in conductances up to 2 nS 
(Fig. 4C). This was particularly evident at 
later times and with high voltages. At pH 4, 
the Bax channel activity was modified in 
two main respects (Fig. 4D). First, conduc- 
tance levels were about threefold lower (g, 
= 77 + 10 pS and 27 + 4 pS) and openings 
were much shorter-lived (7, above 40 pS 
was 85 2 6 ms). Large conductance changes 
as observed at pH 7 (Fig. 4C) were also 
detected at pH 4, although their levels were 
lower (9). 

A general property of Bax channels ob- 
served under all conditions was their mem- 
brane potential (V,)-dependent formation 
or activation (Fig. 4E). Upon asymmetrical 
addition of Bax to one chamber, channel 
activity was facilitated when a negative V, 
was applied to the same side. However, a 
marked sidedness of the channel activity 
was also often observed when Bax was add- 
ed symmetrically. This result implies that 
the channel-forming structures have an in- 
trinsic asymmetry. 

Ion selectivity of the Bax channels at pH 
7 was studied in asymmetric NaCl solutions 
by applying voltage ramps between -30 
and +30 mV during periods of high chan- 
nel activity. In two experiments with 145 
mM Na+ and 125 mM C1- on the cis side 
and 1 M Na+ C1- on the trans side, the 
reversal potential of the channels was about 
- 15 mV, whereas in two experiments with 
145 mM Na+ and 125 mM C1- on the cis 
side and 40 mM Na+, 20 mM C1- on the 
trans side, we estimated the reversal poten- 
tial to be about + 10 mV. Both estimates are 
consistent with channels that are slightly 
cation selective with a permeability ratio of 
Na+ to C1- of about 2.1 (2.25 and 1.95 in 
either case). 

In conclusion, Bax can form pH-depen- 
dent channels in lipid membranes, as re- 
ported for the anti-apoptotic proteins Bcl-x 
(3) and Bcl-2 (4). The intrinsic channel 
properties of Bax and those of Bcl-x and 
Bcl-2 reveal differences, especially with re- 
spect to pH. These differences may be re- 
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Fig. 4. Bax forms channels in planar lipid bilayers. (A) Continuous "h-dilv+~ ----.-----.. ...-------. 
recording of small single-channel currents induced by 20 nM Bax 
added to both sides of a diphyPC planar bayer with symmetric $ 1  
solutions of 125 mM NaCl (pH 7) (78). The applied voltage (V,) 
was 100 mV. Data were sampled at 4 kHz but are shown low- 

' Bax 
40 nM 

pass filtered at 40 Hz. The mean open-channel conductance is 200 ms 
5.6 ? 0.2 pS, At I -kHz bandwidth the opening time showed a 

- 

rapid flickering with a mean open time of 3.5 +- 0.2 ms and a 
poorly quantifiable close time (<I  ms). (B) A 90-s continuous 
recording of Bax channel activity under conditons similar to those 
in (A) at V, = -50 mV. Asterisks indicate conductance of 250 2 
25 pS. Other peaks represent levels of lower amplitude of 180 +- 25 (open arrows), 80 +- 25 (filled 
arrows), and 26 i 7 pS (plus signs). The dwell time at any level above 125 pS was f~tted by a single 
exponential distribution with a mean time of 240 i 20 ms. (C) Large steps of membrane conductance 
recorded during 30 sat -60 mV. The largest conductance level is -1.6 nS; the predomnant level is 700 
pS. Several other conductance levels in steps of -450 pS and 900 pS are readily observable. Smaller 
openngs at the beginnng and end of the trace have characterist~cs slmllar to those shown In (B), (D) An 
80-s contnuous recording of single-channel actvity at pH 4 of the type shown in (B) for pH 7. Bax (1 50 
nM) was added on both sides at V, = 100 mV. The data were analyzed after low-pass filtering at 200 
Hz. The histogram shows two maln conductance levels at 77 i 10 pS (aster~sks) and 27 i 4 pS (arrows) 
and two minor small-conductance channels (8.5 +- 1 and 4 ? 2 pS). The dwell time at any level above 
40 pS was fitted by a s~ngle exponentla distribut~on with a mean time of 85 ? 6 ms [(B) and (D) have 
different time scales]. (E) Incorporation or formation of Bax channels is facilitated by negative voltages 
when applied to the s~de to which the protein was added. Traces show the average response to a series 
of 30-V pulses according to the double-step protocol (top). In the experiment with Bax in trans, the 
voltage steps were 2 4 0  mV: othev~ise, the voltage steps were 2 6 0  mV. 

lated t o  the  pro-apoptotic and anti-apoptot- 
i c  functions, respectively, o f  these proteins. 
Melnbrane insert ion and pore fo rmat ion  o f  
Bax m igh t  prolnote ce l l  death by a l l ou~ ing  
the passive f lux  o f  ions and small lnolecules 
across intracellular membranes in l vh i ch  
the  pro te in  is localized. Local izat ion o f  Bax 
t o  mitochondr ia1 ~nernbranes may trigger a 
permeabil i ty t ransi t ion and  consequent dis- 
r up t i on  o f  the  t ransme~nbrane potent ia l ,  
t w o  cr i t ical  events dur ing the early stages o f  
apoptosis (1 C, 11 ). Our results w i t h  neurons 
and liposornes suggest tha t  at  no rma l  phys- 
iological p H  this act iv i ty may be antago- 

nized by  the presence o f  the  ant i -apoptot ic 
Bcl-2 protein.  Neurons f rom Bax-knockout 
mice are resistant t o  natural ly occurring ce l l  
death and t o  neurotrophic factor depriva- 
t i o n  (12). Development o f  specific Bax 
channe l  blockers may therefore be o f  ther- 
apeutic u t i l i t y  in the treatment o f  diseases 
o f  the nervous system associated w i t h  neu- 
rona l  apoptosis. 
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