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Specification of the Zebrafish Nervous System 
by Nonaxial Signals 

Katherine Woo* and Scott E. Fraser 

The organizer of the amphibian gastrula provides the neurectoderm with both neuralizing 
and posteriorizing (transforming) signals. In zebrafish, transplantations show that a 
spatially distinct transformer signal emanates from tissues other than the organizer. Cells 
of the germring (nonaxial mesendoderm) posteriorized forebrain progenitors when graft- 
ed nearby, resulting in an ectopic hindbrain-like structure; in contrast, cells of the 
organizer (axial mesendoderm) caused no posterior transformation. Local application of 
basic fibroblast growth factor, a candidate transformer in Xenopus, caused malformation 
but not hindbrain transformation in the forebrain. Thus, the zebrafish gastrula may 
integrate spatially distinct signals from the organizer and the germring to pattern the 
neural axis. 

T h e  developing vertebrate central nervous 
system is patterned by inductive interactions 
(1 ). The gastrula organizer (referred to as the 
"dorsal lip" in amphibians, "node" in am- 
niotes, and "shield" in fish) is thought to be 
the source of patterning information (2). 
Analyses using amphibian embryos have in- 
dicated temporally distinct signals within the 
organizer ( 3 , 4 ) :  A n  activator signal from the 
anterior axial mesoderm defines the anterior 
neurectoderm. and a subseauent transformer 
signal from ;he chordagesoderm (noto- 
chord) repatterns nearby neural tissue into 
more posterior types. In mouse, chick, and 
fish embryos, the elimination of the organiz- 
er does not abolish anteroposterior (AP) pat- 
terning in the neurectoderm; hence, there is 
a source of pattern information in non-orga- 
nizer tissues (5. 6). . ,  , 

The neural fate map of zebrafish (7) shows 
patterning by 6 hours of development, when 
gastrulation has only advanced to the forma- 
tion of a thickened blastoderm margin (germ- 
ring) and an embryonic shield at its dorsal 
side. Forebrain progenitors are located far 
from the germring, spanning the dorsal mid- 
line (Fig. 1A). In contrast, hindbrain progen- 
itors lie close to the germring, lateral to the 
embryonic shield, with midbrain progenitors 
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in between (Fig. 1A). The early regionaliza- 
tion of anterior (forebrain) and posterior 
(hindbrain) neural progenitors within the 
neurectoderm allowed us to investigate signals 
that may differentially pattern the neuraxis. 
We hypothesized that proximity to the germ- 
ring might specify more posterior neural fates. 
Indeed, labeled presumptive forebrain progen- 
itors (Fig. lB) ,  transplanted (8) at shield stage 
to the position of the presumptive hindbrain, 
adopt the hindbrain fate (Fig. 1C). Moreover, 
presumptive hindbrain cells are not commit- 
ted to a specific fate at this stage (9). Thus, 
the signals that normally instruct or permit 
cells to adopt the hindbrain fate are still ac- 
tive in vivo at 6 hours. 

Because deletion of the shield disru~ts  
notochord but not hindbrain development 
( 6 ) ,  the signals responsible for hindbrain 
patterning probably do not come exclusive- 
lv from the shield. Germrine tissue mav be a source of such a posterioriz7ng signal. i'he 
shield contributes to axial mesoderm, noto- 
chord, and ventral neural tissues (10) (Fig. 
ID);  the germring gives rise to somitic me- 
soderm, posterior mesoderm, and endoderm 
(Fig. 1, E and F) (1 1). T o  investigate pat- 
terning by nonaxial germring tissue, we 
transplanted sectors of the shield (0") and 
the germring at defined angular distances 
from the dorsal midline (45", 90°, 135", and 
180") to the animal pole, a region fated to 
become forebrain (Fig. 1, A and B), of 
shield-stage zebrafish. If the germring were 
the source of a patterning signal, such grafts 
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should cause presumptive forebrain cells to 
adopt more posterior fates. 

Embryos that received a fluorescently 
labeled germring graft to the animal pole 
developed hindbrain-like structures in the 
forebrain (Fig. 1, G to I). Ectopic host- 
derived structures included otic vesicles 
(Fig. lH),  a midbrain-hindbrain isthmus, 
and part of the anterior hindbrain (Fig. 11). 
Large pigment cells were found near the 
graft site (Fig. lH, arrows). These germring 
signals have a short-range effect; the con- 
tralateral forebrain appeared unaffected in 
recipients (Fig. 1H; see also Fig. 2C). Trans- 
plantations of ectodermal tissue into the 
animal pole did not cause a hindbrain trans- 
formation (12). At present, it is unclear 
which cell population (somitic mesoderm, 
endoderm, or both) is responsible for these 
transformations, because the germring con- 

tains a mixed progenitor population. 
Expression analysis of KroxZO, a zinc- 

finger transcription factor present in hind- 
brain rhombomeres 3 and 5 (1 3) (Fig. 2A), 
demonstrated that the region close to the 
germring transplant had adopted a hind- 
brain-like fate (Fig. 2, B to F, and Table 1). 
Ectopic KroxZO expression was detected as 
early as 10 to 11 hours of development (the 
beginning of somitogenesis), when KroxZO 
normally appears in the host's hindbrain 
(Fig. 2D); this finding suggested that the 
regional fate of the forebrain had been al- 
tered by the end of gastrulation (10 hours). 
Ectopic expression appeared as a single 
patch (Fig. 2, C, D, and F) or as two bands 
(Fig. 2, B and F). There was no obvious 
correlation between the origin of the graft 
and the amount of ectopic KroxZO induced. 
Ectopic otic vesicles were often found adja- 

EPORTS I 
cent to the ectopic Krox2O expression, 
mimicking the normal juxtaposition of otic 
vesicle and rhombomere 5. Grafted tissue 
did not contribute to either the ectopic 
KroxZO-expressing cells (Fig. 2C) or the 
ectopic otic vesicles. 

In contrast, grafting the embryonic 
shield to the animal pole did not lead to 
hindbrain-like transformation (Fig. 1J and 
Table 1). Morphological changes in the 
forebrain were less drastic than those result- 
ing from other germring grafts; the host's 
retina was often of near normal size (14) 
(Fig. 1J). Most of the disruption appeared to 
result from mechanical obstruction of fore- 
brain morphogenesis, and perhaps from a 
slight expansion of the forebrain (Fig. lJ, 
arrowhead). Most embryos with a shield 
graft did not express any KroxZO in the 
forebrain (Fig. 2E); a minority had a few 
KroxZO-positive cells near the graft (Table 
1) (12). 

The germring transplan 
change forebrain neural tissut 

ability 
to a sect 

1 of patterned hindbrain is reminiscent of the 
"transforming" signal postulated to play a 
major role in neural patterning in Xenopus. 
Recent studies in Xenopus (15) have iden- 
tified basic fibroblast growth factor (bFGF) 
(4, 16), retinoic acid (RA) (17), and Wnts 
(18, 19) as candidate transformer signals. 
Although there is evidence sugeestine that - 
RA acts as a posteriorizing sig 
(17), bath (20) or local (21) 

.,.. 
pal 
apt 

'in ~ e k  
dicatio~ 

Fig. 1. Transplantation assays identifying signals important for hindbrain specification. (A) Neural fate 
map of the shield-stage gastrula, created by injecting cells with fluorescent dextran as a lineage tracer 
[modified from (7)]. (6 and C) Proximity to germring tissue may be necessaryfor hindbrain fate. In (B), the 
normal fate (determined by homotopic replacement) of cells (white) located at the animal pole is to 
become telencephalon and retina (ov, otic vesicle). When these cells are transplanted close to the 
germring (C), they (brown) participate normally in the formation of the hindbrain and express Krox20 
(blue) along with other host cells (r3 and r5, rhombomeres 3 and 5). (D to F) Normal descendants of the 
germring. Fluorescently labeled cells appear white. In (D), a homotopic graft of the central third of the 
embryonic shield yields labeled cells in the hatching gland (hg), head mesenchyme (hm), notochord 
(noto), and floorplate (fp), as previously reported (10). In (E), a 90" germring contains mainly somitic 
progenitors (som), with a minor contribution to endoderm (en) and head mesenchyme. In (F), a 180" 
germring contains progenitors of posterior trunk and tail somites (som), blood precursors (b), and 
endoderm. (G to J) Morphological changes in embryos that received mesendoderm grafts to the animal 
pole. A control embryo (G) is shown in frontal view. In (H), atypical embryo with a 90" germring graft has 
a left eye (e) that is displaced inward and downward by the ectopic hindbrain-like mass and otic vesicle. 
Ectopic pigment cells (pg) are present. In a case in which no ectopic otic vesicle developed (I), the graft 
(white) rests at the center of the anterior neuraxis, and the normal telencephalon is replaced by a tissue 
mass (bracketed by white arrowheads) resembling the anterior hindbrain, with the characteristic L- 
shaped bend of the isthmus and large pigment cells (black arrowheads). In an embryo that received a O" 
(shield) graft (J), no ectopic otic vesicle or hindbrain-like mass of tissue was seen near the graft. The 
ventral forebrain (arrowhead) appears to be enlarged. All scale bars, 100 km. 

I RA does not lead to a transf&-nation of 
forebrain into hindbrain in zebrafish. Inter- 
fering with a number of Wnt molecules and 
their signaling components can result in 

1 substantial caudal defects (22), and there is 
some evidence that Xwnt3a can synergize 
with known neural inducers to produce a 
complete range of AP markers (18). How- 
ever, no zebrafish Wnt examined to date is 

 pressed in a pattern consistent with a e: _ 
transformer signal (23,24). 1 
of bFGF to neuralized animal 

applicat 
3s suppr 

:ion 
ess- 

es anterior and enhances posterior neural 
markers (16), an effect expected of a trans- 
former signal. Furthermore, overexpression 
of a dominant negative FGF receptor in 

Table 1. Morphological and molecular changes in 
embryos receiving germring or shield grafts. 

Type of tissue 
grafted 

Ectopic otic Ectopic 
vesicle(s)* Krox2Ot 

45" germring 
90" germring 
135" germring 
180" germring 
0" (shield) 

^Scored at 24 to 36 hours. ?Scored at 16 to 24 
hours. $Only a few Krox20-positive cells were detected. 
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zebrafish at the early cleavage stages causes 
a loss of posterior structures (25). These 
studies suggest that bFGF is a candidate 
transformer signal in zebrafish. 

T o  determine whether local application 
of bFGF can mimic the transforming effect 
o f  germring tissue transplants, we implanted 
bFGF beads in the animal   ole of shield- 
stage gastrula (26). The beads caused severe 
perturbation o f  the host's forebrain (Fig. 

3B) but did not  cause hindbrain-like trans- 
formation (compare Figs. 1H and 3B) or 
ectopic KroxZO expression (Fig. 3C). Inter- 
estingly, the expression o f  fore-midbrain 
marker 6-otx2 (27) remained robust (1 2), 
which suggested that the regional identity 
of the forebrain was unchanged. Control 
beads not  coated wi th bFGF had n o  effect 
o n  brain morphology (Fig. 3A)  or gene 
expression (12). Thus, bFGF, if involved, 

Fig. 2. Molecular changes in the forebrain after germring transplant. (A) Control embryo in which Krox20 
(purple) marks rhombomeres 3 and 5 (r3 and r5) in the hindbrain. (6) In the forebrain of an embryo with 
a 90" germring graft (orange-brown), ectopic Krox20 expression (blue, arrowheads) indicates a trans- 
formation to hindbrain. (C) A section of an embryo with a 180" germring graft (e, eye). The graft (white 
arrowhead) does not overlap with the Krox20-positive domain (black arrowhead). (D) Ectopic Krox20 
expression (white arrowhead) can be detected as early as 10 to 11 hours of development, when the 
host's normal Krox20 expression begins (white arrows). Grafted tissue (yellow arrow) did not express 
Krox20. (E) Most of the embryos with a shield graft (orange) do not have ectopic Krox20 in the forebrain. 
In thosefew that do (not shown), only afew cells are Krox20-positive, (F) Embryos that had received 45" 
germring grafts, as well as those with 135" and 180" grafts (not shown), show robust ectopic Krox20 
expression near the graft in the forebrain. In a population of manipulated embryos, Krox20-positive cells 
are seen as one band or two bands. An asterisk marks the control embryo. All scale bars, 100 pm. 

must act in concert wi th other factors to 
generate the germring activity. 

The nonaxial location of transforming 
activity in the zebrafish suggests a modified 
two-signal model (Fig. 3D): A general "ac- 
tivating" influence supplied by the organiz- 
er (shield) (6) neuralizes the presumptive 
neurectoderm to  produce anterior neural 
tissue, while a transforming influence abun- 
dant in the remainder of the germring 
(nonaxial mesendoderm) emanates radially 
to posteriorize the activated (neuralized) 
tissue. The normal morphogenetic move- 
ments during gastrulation (7) displace pre- 
sumptive forebrain progenitors toward the 
animal pole (Fig. 3D, white arrow), away 
from the transforming signal or signals. 
Hindbrain progenitors, in contrast, remain 
close to the germring as they converge to 
the dorsal side (Fig. 3D, black arrows), per- 
mitting their transformation to  more poste- 
rior neural fates. Although this model dif- 
fers from the classical amphibian activa- 
tion-transformation model (3, 4) in that 
the transformer signals reside outside the 
organizer region, the model is consistent 
wi th recent in vitro observations in ze- 
brafish (28). The observation that focally 
applied bFGF causes head malformation 
rather than hindbrain transformation in ze- 
brafish gastrula is consistent wi th the con- - 
elusions of a recent transgenic study using 
Xenobus (29). which indicated that FGFs 
may not  be solely responsible for the neural 
transforming activity in vivo, in contrast to  
in vitro results (1 6). Our study underscores 
the importance of testing candidate trans- 
former molecules in a relevant spatial and 
temporal context. In providing evidence for 
endogenous transformer action in vivo, the 

Fig. 3. Direct test of bFGF as a transformer. (A and 6) 
Morphological changes (left panels, side view; right pan- 
els, head-on view) in the forebrain of embryos that re- 
ceived either control or bFGF-coated beads (arrows). 
Control beads (A) led to no discernible effect on forebrain 
morphology, whereas bFGF beads (B) caused severe 
forebrain deformation. In this example, the size of both 
optic lobes was reduced (right panels), but no hindbrain- 
like structure or ectopic otic vesicles were observed. (C) 
Molecular changes in embryos with bFGF beads. Unlike 
germring grafts (Fig. 2), bFGF does not cause ectopic 
expression of Krox20 in the forebrain, despite its effect ori 
forebrain morphology (B). Green arrows point to the bead 
in each embryo. (D) Two physically separated signals 
acting in the zebrafish gastrula may lead to the observed 
neuronal fate map. An activator signal originates from the 
dorsal midline, perhaps before shield formation; this sig- 
nal acts to induce neural tissue with a broad anterior 
character (red-graded area). As the germring forms, a a Neuralized (anterior) Forebrain 
transformer signal (blue-graded area) is generated that 
modulates the axial character of the nearby neural tissue, 
resulting in distinct forebrain (red), midbrain (not shown), 
and hindbrain (blue) territories. This transformer signal is strongly pre- former signals might be either instructive (acting specifically to promote 
sent within the germring and is much reduced in the shield. Dorsal certain fates) or permissive. The model does not preclude the presence of 
ectoderm already exposed to the activator signal can react to the other signals, for example, those that divide forebrain into telencephalon 
transformer to form the complete nervous system. The activator and trans- and diencephalon. 
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model and manipulations presented here 
can be applied to the dissection of pattern- 
ing mechanisms in the zebrafish nervous 
svstem. 
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