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Modulation of Hepatic Gene Expression
by Hepatocyte Nuclear Factor 1

Eleni Ktistaki and lannis Talianidis*

Hepatocyte nuclear factors 1 and 4 (HNF-1 and HNF-4) are liver-enriched transcription
factors that function in the regulation of several liver-specific genes. HNF-1 activates
genes containing promoters with HNF-1 binding sites. However, this factor negatively
regulates its own expression and that of other HNF-4-dependent genes that lack HNF-1
binding sites in their promoter region. This repression is exerted by a direct interaction
of HNF-1 with AF2, the main activation domain of HNF-4. The dual functions of gene
activation and repression suggest that HNF-1 is a global regulator of the transcriptional
network involved in the maintenance of hepatocyte-specific phenotype.

Liver-specific gene expression is governed
by the combinatorial action of a small set of
liver-enriched transcription factors, includ-
ing HNF-1, C/EBP, HNEF-3, and HNF-4
(1). The expression patterns of HNF-1 and
HNF-4 closely correlate with the differen-
tiation state of hepatic cells. HNF-4 is an
activator of the HNF-1 gene, defining a
transcriptional hierarchy involved in both
the determination and maintenance of he-
patic phenotype (2). In transient transfec-
tion experiments, HNF-1 negatively regu-
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lates its own and other HNF-4-dependent
promoters that are not directly recognized
by HNEF-1 (3). These findings suggested the
functioning of an indirect negative autoreg-
ulatory mechanism that is triggered by in-
creased intracellular concentrations of
HNE-1. HNF-1 did not affect several other
promoters, and fusion proteins containing
different NH,- and COOH-terminal parts
of the HNF-1 molecule failed to inhibit
HNF-4-mediated transcription (3, 4).
These findings argue against a squelching
effect.

To investigate the potential role of
HNF-1 on the transcription of its own gene
in the in vivo chromosomal context, we

generated stable HepG2 cell lines (HIA
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and H1B) expressing different amounts of
HNF-1 protein. The expression of endoge-
nous HNF-1 and various target genes was
analyzed by Northern (RNA) blot analysis.
A glycerol aldehyde phosphate dehydroge-
nase (GAPDH) probe that produced con-
stant amounts of mRNA was used as a
control. Hybridization with a probe encom-
passing the coding region of the rat HNF-1
cDNA (tHNF-1CR) produced signals of 3.6
and 3.0 kb that corresponded to endoge-
nous and transgene-derived HNF-1, respec-
tively (Fig. 1). The amount of endogenous
HNF-1 transcript was reduced in both H1A
and H1B cell lines. This decrease was also
observed by hybridization with the use of a
3’ untranslated (3’ UTR) fragment of the
human HNF-1 as a probe that detected only
endogenous HNF-1 mRNA (Fig. 1). Ex-
pression of apolipoprotein C-III (apoC-III)
is dependent on HNF-4 (5). The amount of
apoC-III mRNA was decreased in the
HNF-1-overproducing cell lines. However,
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Fig. 1. Ectopic expression of HNF-1 represses
endogenous HNF-1 and apoC-lll transcription.
HepG2 cells were transfected with pCB-HNF-1
expression vector (3), and stably expressing cell
lines were selected and expanded in a medium
containing G418 (150 ug/ml; Geneticin, BRL).
Polyadenylate RNAs from cell lines expressing dif-
“ferent amounts of HNF-1 (H1A and H1B) were
prepared and compared with wild-type HepG2
mRNA by Northern blot hybridization using the
following probes: rHNF-1CR (containing the entire
coding region of rat HNF-1 cDNA), hHNF-1 3’
UTR (containing nucleotides 2305 to 2783 of the
3’ untranslated region of human HNF-1 cDNA),
and cDNAs coding for human apoC-lil, mouse
albumin, human HNF-4 (hHNF-4), and GAPDH as
control. Hybridization and washing conditions
were as described in (73). Positions of radioactive
signals are shown at the right. With HNF-4 a sec-
ond signal above the 4.5-kb band can also be
seen, which corresponds to cross-hybridization
with contaminating 28S ribosomal RNA.
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the hybridization signal for mRNA tran-
scribed from the HNF-1-dependent albu-
min gene (6) was increased. The amount of
HNF-4 transcript remained constant, which
implied a lack of positive reciprocal activa-

tion of HNF-1 and HNF-4 in the chromo-

somal context. Consistent with this notion
is the observation that some HNF-4 pro-
moter constructs that contain the putative
HNF-1 binding site do not drive liver-spe-
cific expression in transgenic mice (7).
Moreover, wild-type and null mutant mice
that are devoid of HNF-1 express HNF-4 in
similar amounts (8).

In the HNF-1-overproducing cell lines,
the activities of the albumin, apoC-III, and
HNE-1 promoters were affected in the same

way as the amount of their steady-state
mRNA, indicating that the observed

changes were the result of altered transcrip--

tion rates (Fig. 2). In addition, the activity
of the chimeric promoter construct 4XA
TK-CAT, which contains four copies of the
HNF-4 binding site of the HNF-1 promoter,
was also reduced. On the other hand, the
activity of the control promoter (RSV-
CAT) was not changed (Fig. 2). This sug-
gests that HNF-1 exerts its negative effect
by counteracting HNF-4 activation on the
corresponding regulatory regions.

Fig. 2. Negative regulation of HNF-

To understand the molecular mecha-
nism responsible for the above observations,
we performed electrophoretic mobility shift
assays to compare the amounts of active
DNA binding protein in the stable cell
lines. As a control, Spl binding activity was
monitored and found to be similar in all
extracts (Fig. 3A). Alb-PE (3, 6) and site A
(3) were used as probes for HNF-1 and
HNF-4, respectively. In the H1A and H1B
cell lines, DNA binding to the Alb-PE
probe was 11 and 4 times that of the wild
type, respectively (Fig. 3A). This is much
lower than the observed increase in total
amounts of HNF-1 mRNA. The difference
might result from additional translational
control mechanisms or limiting intracellu-
lar concentrations of DCoH (dimerization
cofactor for HNF-1), which is required for
HNF-1 dimerization and stability (9). No
difference in DNA binding activity on the
HNF-4 probe was observed with the differ-
ent HepG2 cell lines (Fig. 3B). An anti-
body raised against HNF-4 almost quantita-
tively supershifted the DNA-protein com-
plex formed on the site A probe, whereas an
HNF-1 antibody failed to supershift the
complex (Fig. 3B). Moreover, no difference
in HNF-4 binding affinity to site A was
detected with the use of extracts from the

Alb-CAT ApoC-HiI-CAT HNF-1-CAT 4xA TK-CAT RSV-CAT
4-dependent promoters by HNF-1. z 10 120
Wild-type (WT) and HNF-1-over- 2 4 & 100
expressing HepG2 cell lines Band ~ § > 80
A) were transfected by the calcium L 6 %
phosphate precipitation method o g 60
(13) with 2 ug of the indicated re- £ = 40
porters containing the mouse albu- 8 2 S 2
min (Alb-CAT) (3), human apoli- &
poprotein C-lll (ApoC-Ill-CAT) (5, celitine WTB A WIBA WIBA WIBA WIBA

13), rat HNF-1 (HNF-1-CAT) (3), or

Rous sarcoma virus (RSV-CAT) (3) promoters, or a chimeric reporter construct containing four copies of
the HNF-4 hinding site of the HNF-1 promoter fused to the minimal promoter region (nucleotides —85
to +51) of the herpes simplex virus thymidine kinase gene (4 XA TK-CAT) (3). The bars represent means
+ SE of normalized CAT (chloramphenicol acetyltransferase) activities from at least four independent
experiments, and these values are expressed as relative activation (Alb-CAT) or as a percentage of the

- activity measured in wild-type cells.

Fig. 3. Site A of the HNF-1 promot- A
er binds HNF-4 but not HNF-1. Nu-
clear extracts from wild-type
HepG2 (H) and the HNF-1-overex-
pressing (H1A and H1B) cell lines -
were prepared and analyzed in
electrophoretic mobility shift assays
using (A) Alb-PE and Sp1 or (B) site
A oligonucleotide probes, as de-
scribed (13). In some assays, 1 wl of
antibody to HNF-4 (4) or HNF-1 (1)
at 1:6 dilution were also included.
The identity of HNF-1 that bound to
the Alb-PE probe was verified by -
supershifts with HNF-1 antibody
(70).

B
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Extract T
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HepG2, H1A, and HI1B cell lines or ex-
tracts from HNF-4- and HNF-1-trans-
fected COS-1 cells (10). Thus, neither
HNF-1 nor another factor that may have
been induced by HNF-1 interacts directly
with site A, and HNF-1 does not affect the
DNA binding activity of HNF-4.
Although mobility shift experiments did
not reveal interactions between HNF-1 and
HNF-4, weak protein-protein interactions
may exist that are unable to survive elec-
trophoretic conditions but could explain
the down-regulation of HNF-4—dependent

Fig. 4. HNF-1 represses

genes by HNF-1. To test this idea, we
mapped the HNF-4 protein domains neces-
sary for HNF-1-mediated down-regulation.
Fusion proteins containing the Gal4 DBD
(the DNA binding domain of yeast Gal4
protein) and parts of HNF-4 bind to the
Gal4 response element as dimers through
the Gal4 DBD (11), and their expression is
not affected by HNF-1 (10). The Gal4
HNF-4(E) construct that contains the com-
plete ligand binding—dimerization domain
(12) of HNF-4 was a potent activator of the
Gal4-responsive reporter in both HepG2

; . COS-1 cells
HNF-4_act|v_|ty through HepG2 cel lines NFT
mteractlonw!ththeHr_\lF- WT H1B H1A -HNF-1 FL M280 M440
4 E domain in vivo. Gal4 DBD
COS-1 and HepG2 lines a T 10 09 11 10 11 11 08
(WT, H1B, HIA) were  Gal4 HNF-4(E) [Commmmmm 182 98 51 235 28 226 35
transfected with 2 ug of  Gal4 HNF-4(E354) o Femm 12 14 13 11 10 o9 12
G4-CAT reporter con- 180 354

Gal4 VP16 159.0 1435 150.8 182.7 178.5 185.2 175.6

taining four copies of the
17-nucleotide oligomer

Gal4 binding site, together with 0.5 pg of the indicated Gal4 expression plasmids. In COS-1 cells, 0.5 png
of pCB-HNF-1 (FL), pCB-HNF-1(280) (M280), or pCB-HNF-1(440) (M440) was also included where
indicated. The numbers represent mean values of B-galactosidase-normalized CAT activities from at
least six independent experiments with SEs of <8% and are expressed as activation relative to the
activity obtained with the Gal4 DBD. Maximal activity in both HepG2 and COS-1 cells was obtained with
afusion construct containing the entire E domain [Gal4 HNF-4(E)). No activity was observed when other
combinations of HNF-4 domains (such as amino acids 337 to 368, 337 to 455, 368 to 455, and 227 to
455) were tested, suggesting that the HNF-4 AF2 domain is active only in the context of an intact E

domain (74).

Fig. 5. HNF-1 interacts with the AF2 domain of
HNF-4 in vitro and in vivo. (A) In vitro synthesized
[®S)methionine-labeled HNF-1 was incubated with
the indicated GST fusion proteins, and the bound
proteins were analyzed by 10% SDS-polyacrylam-
ide gel electrophoresis (PAGE). Growth and expres-
sion of GST fusion proteins in Escherichia coli strain
JM109 were performed as described (75). 35S-la-
beled full-length recombinant HNF-1 was synthe-
sized in vitro from the corresponding constructs in
Bluescript KS (Stratagene) using the TNT coupled
reticulocyte lysate system (Promega). Glutathione-
Sepharose beads containing 2 ug of each fusion
protein were incubated with 35S-labeled proteins in
interaction buffer [100 mM KCI, 20 mM Hepes (pH
7.9), 0.1% NP-40, 5 mM MgCl,, 0.2% bovine serum
albumin (BSA), 10% glycerol, 0.1 M phenylmethyl-
sulfonyl fluoride, and aprotinin (10 pg/ml)] for 1.5
hours at 4°C with constant agitation. After extensive
washing with the same buffer minus BSA and glyc-
- erol, the beads were resuspended in 20 pl of SDS-
loading buffer and analyzed by SDS-PAGE; 8% of
the input 35S-labeled HNF-1 is shown in the first lane.
(B) COS-1 cells were transfected with 500 ng of
nuclear localization—deficient mutant pMT-HNF-
4(227-455) alone (pCB6 vector) or with 1 pg of
pCB-HNF-1 FL, pCB-HNF-1(440), pCB-HNF-
1(280), or pBx-Gal4 expression vectors, transferred
to cover slips, and stained with polyclonal peptide
antibody raised against the COOH-terminal 11-ami-
no acid epitope of HNF-4, as described (74). The
number of cells examined showing [nuclear]:[nuclear

A 2
™ ) pCB6 vector
afs
=<3
< < <
siils
[]
Erxssrd
5 L g
2o bhbhnho
EO0C0G00
=
HNF-1 FL HNF-1(440)

HNF-1(280)

Gal4

plus cytoplasmic]:[cytoplasmic] staining was 0:0:54 in HNF-4(227-455)-transfected cells. In cotransfected
cells this ratio was 56:2:1 (HNF-1 FL), 51:1:2 [HNF-1(440)], 0:0:42 [HNF-1(280)], and 0:0:51 (Gal4). Typical
examples of the immunofluorescent images are shown (magnifications, x284).
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and COS-1 cells (Fig. 4). This activation
was strongly inhibited by increased intracel-
lular amounts of HNF-1 derived from its
ectopic expression in the stably transfected
HepG2 cell lines (H1B and H1A) or from
cotransfected expression vector (COS-1
cells). Similar results were obtained with
cotransfected HNF-1(440), which lacks the
COOH-terminal  activation  domains,
whereas HNF-1(280), which contains the
dimerization and DNA binding domains,
failed to exhibit repressor activity (Fig. 4).
Partial deletion of the main activation do-
main of HNF-4 [Gal4 HNF-4(E354)],
which is located between amino acids 337
and 368, resulted in loss of activity. No
significant change was observed in experi-
ments with Gal4 VP16, which was used as
an unrelated control (Fig. 4).

These results indicated that HNF-1 may
repress gene expression through physical in-
teraction with HNF-4. In vitro evidence for
such protein-protein interaction was pro-
vided by pull-down assays with glutathione-
S-transferase (GST)-HNF-4 fusion pro-
teins and in vitro synthesized 3°S-labeled
HNEF-1. HNF-1 associated with TFIIB (Fig.
5A); this interaction may be important for
HNEF-1-facilitated formation of preinitia-
tion complexes. Comparable amounts of
bound HNF-1 protein were recovered by
GST-HNF-4(130-368), containing the en-
tire E domain, and by GST-HNF-4(AF2),
containing the main activation region
(amino acids 337 to 368) of HNF-4. In
contrast, no interaction was observed with
an HNF-4 derivative lacking the AF2 do-
main [GST-HNF-4(AAF2)] or with the
GST-Gal4 fusion protein that was used as
an unrelated control (Fig. 5A).

Interaction between HNF-4 and HNF-1
in intact cells was determined by nuclear
cotranslocation assays with the use of a
mutant form of HNF-4 [HNF-4(227-455)],
which lacks specific nuclear localization sig-
nals but contains the domain required for in
vitro interaction with HNF-1. This mutant
was detected exclusively in the cytoplasm of
transfected COS-1 cells (Fig. 5B). Coex-
pression of HNF-4(227-455) with either
full-length HNF-1 (FL) or HNF-1(440), but
not with HNF-1(280) or Gal4 protein, re-
sulted in its translocation to the nucleus
(Fig. 5B). Thus, HNF-1-HNF-4 interaction
required the HNF-1 domain located be-
tween amino acids 280 and 440, but not the
COOH-terminal activation domains of
HNF-1.

Taken together, our results indicate that
the AF-2 domain of HNF-4 is sufficient and
necessary for physical interaction with
HNF-1 and for repression. This association
may block the HNF-4 activation domain in
a way that prevents either its interaction
with coactivators that transduce AF2 activ-
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ity to the transcription machinery or its
direct interaction with general transcrip-
tion factors. As a consequence, increased
amounts of HNF-1 induce a regulatory
mechanism that leads to the general down-
regulation of HNF-4-dependent liver-spe-
cific genes, including the HNF-1 gene itself.
This promoter-dependent dual function of
HNF-1 suggests its central role in the coor-
dination of the regulatory network that de-
fines the hepatic phenotype.
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Positive Effects of Combined Antiretroviral
Therapy on CD4* T Cell Homeostasis and
Function in Advanced HIV Disease

B. Autran,* G. Carcelain, T. S. Li,T C. Blanc,i D. Mathez,

R. Tubiana, C. Katlama,

P. Debré, J. Leibowitch

Highly active antiretroviral therapy (HAART) increases CD4 ™ cell numbers, but its ability
to correct the human immunodeficiency virus (HIV )-induced immune deficiency remains
unknown. A three-phase T cell reconstitution was demonstrated after HAART, with: (i)
an early rise of memory CD4™ cells, (ii) a reduction in T cell activation correlated to the
decreasing retroviral activity together with an improved CD4* T cell reactivity to recall
antigens, and (jii) a late rise of “naive” CD4* lymphocytes while CD8" T cells declined,
however, without complete normalization of these parameters. Thus, decreasing the HIV
load can reverse HIV-driven activation and CD4™* T cell defects in advanced HIV-infected

patients.

New antiretroviral therapies combining
inhibitors of HIV-1 protease and reverse
transcriptase are highly efficient at reducing
viral replication and increasing CD4* T
cell numbers (1). The physiopathological
processes that allow such CD4* T cell in-
creases are debated as is the capacity of such
treatments to allow CD4™" cell regeneration
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and restoration of immune competence.
These sets of questions reflect current con-
troversies about the pathogenesis of HIV-
related CD4" cell depletion. Indeed, al-
though much attention has been paid to the
high turnover in HIV virions and infectious
CD4* T cells (2), no evidence for an en-
hanced turnover and regeneration in the
mature CD4 " subset has been produced so
far, either in the course of the natural HIV
infection or after HAART (3). Telomer
length studies have indeed provided evi-
dence for a high turnover in the CD8* but
not in the CD4" subset (4). Furthermore,
reduced numbers of phenotypically defined
“naive” T cells in advanced HIV-infected
patients argue for a decline in the T cell
regeneration capacity with disease progres-
sion, although mechanisms for such defects
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are not elucidated (5). On the other hand,
the chronic T cell activation observed
throughout the course of infection favors T
cell apoptosis or anergy, or both, which
might contribute to the CD4™ T cell deple-
tion, though also affecting the undepleted
CD8* cell subset (6). A progressive CD4+
cell dysfunction also appears on a per-cell
basis in early stages of the disease, as as-
sessed in vitro by defects in CD4" T cell
proliferation and interleukin-2 (IL-2) pro-
duction to recall antigens (7), and might
participate in the loss of mature T cell
expansion with disease progression.

We investigated the extent to which
HAART would reverse these major CD4*
T cell abnormalities and allow some resto-
ration of immune competence at advanced
stages of HIV disease. We analyzed expres-
sion of key surface molecules on peripheral
blood T cells and the CD4* T cell prolif-
eration against recall antigens from two ma-
jor opportunistic infections under potent
antiretroviral regimens. Eight previously
untreated adults with advanced HIV-1 in-
fection received ritonavir, a potent HIV-1
protease inhibitor, combined with azidothy-
midine (AZT) and dideoxycytosine, two
reverse transcriptase inhibitors, over a peri-
od of 12 months. Ritonavir given alone the
first 2 weeks rapidly induced a 1.3 * 0.5 log
decrease (P = 0.01) in the numbers of both
HIV RNA copies per milliliter of plasma and
infectious cells per 107 blood mononuclear
cells from base-line values of 4.9 = 0.4 and
3.4 + 0.5, respectively (P < 0.05). A max-
imal decline of 1.9 * 0.6 log and 2.5 = 0.5
log was reached for each viral parameter at
month 6 under triple-combination therapy
(Fig. 1). A low stable viral load was main-
tained under treatment through month 12
with plasma HIV-1 RNA copies falling be-
low the threshold of detection in three of
the eight patients. Major T cell changes
were also observed in the peripheral blood
from all patients during the first 2 weeks of
treatment. A steep rise occurred in lympho-
cyte counts that predominated on the
CD4" subset, with a twofold CD4" cell
increase from a mean base line of 164 = 86
cells/pl of plasma to 327 = 74 cells/pl of
plasma (P = 0.01). Meanwhile, CD87" cells
also increased, though with a lower ampli-
tude from a mean of 1168 * 427 cells/ul
plasma at entry to 1387 = 619 cells/pl
plasma at day 15 (P = 0.035). During the
next 12 months, a sustained though slower
CD4* cell increase was observed with a
mean positive linear slope of +10%. The
CD4™* cells reached a mean value of 365 =
145 cells/pl plasma 1 year after initiation of
the study, however, remaining below nor-
mal ranges in six of the eight patients
(mean normal CD4 counts were 900 *+ 185
cells/pl plasma). In contrast, CD8* cells, as
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