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The importance of terrestrial-aquatic linkages was evaluated by a large-scale, 3-year 
exclusion of terrestrial leaf litter inputs to a forest stream. Exclusion of leaf litter had a 
strong bottom-up effect that was propagated through detritivores to predators. Most 
invertebrate taxa in the predominant habitat declined in either abundance, biomass, or 
both, compared with taxa in a nearby reference stream. However, fauna in moss habitats 
changed little, indicating that different food webs exist in habitats of different geomor- 
phology. Thus, the ecosystem-level consequences of excluding detrital inputs to an 
ecosystem were demonstrated. Inputs of riparian detritus are essential for conservation 
or restoration of diverse stream food webs. 

Detr i tus ,  or dead organic lnatter ( I ) ,  is rates abundance, biomass, individual 
the major carbon pathway in most eco- growth rates, survivorship, and develop- 
systems: 70 to 90% of all primary produc- ment times into a single metric (12). Pro- 
tion eventually enters the detrital food duction provides the best measure of the 
web ( 2 ) .  T h e  addition of detritus to food relationship of animals to energy flow in 
xebs complicates classical plant-herbi- ecosysteins ( 1  2, 13). Benthic animal abun- 
vore-predator relationships (3 ) .  Indeed, in dance and biomass were sampled from two 
most headwater streams draining forests in 
eastern North America, inputs of detritus 
from the surrounding forest exceed with- 
in-stream primary production ( 4 ) .  One  of 
the basic tenets of stream ecology for more 
than two decades has been the importance 
of terrestrial-aquatic linkages (5).  Al- 
though details about linkages between de- 
tritivores and detritus processing in 
streams are well known ( 2 ,  6 ,  7), there is 
little direct evidence supporting the im- 
portance of terrestrial detrital inputs and 
ecosystem productivity (8)  and it is limit- 
ed to short-term studies in artificial chan- 
nels (9 ) .  It has also been suggested that 
several generations of consulners are re- 
quired to detect responses to detrital ma- 
nipulations (10). We studied the role of 
detritus in ecosvstem oroductivity by ex- 

distinct habitats: mixed substrates and 
moss-covered bedrock (14). We used ran- 
domized intervention analvsis ( 1  5) to com- , , ,  

pare inultiyear differences of aniinal abun- 
dance and biomass between reference and 
treatment streams. 

As a res~ilt of litter exclusion, we ob- 
served major changes in abundance, bio- 
mass, and production of the invertebrate 
fauna in the treated stream. O n  the basis 
of modes of feeding [ f~~nc t iona l  feeding 
groups (FFG) ( 1  6)], aniinal populations in 
the two stream habitats (14)  responded 
very differently to litter exclusion (Table 
1).  Significant changes occurred in abun- 
dance or biomass of large- and fine-parti- 
cle-feeding detritivores (shredders and 
collectors, respectively) and predators in 
the dominant m ~ x e d  substrate habitats 
(cobble, pebble, and gravel-sand). Howev- 
er, on  moss-covered bedrock, there were 
n o  significant differences between streams u 

for abundance or biomass of animals be- 
longine to any FFG. - u 

Seventeen of the 29 major taxa in the 

Table 1. Average monthly abundance (number/m2) and b~omass (mg AFDM/m" i I SD In mixed 
substrate and bedrock outcrop habltats of the reference and itter-exclusion stream before treatment 
(pretreatment per~od was September 1992 to August 1993, n = 12) and dur~ng treatment illtier 
exclusion per~od was September 1993 to August 1996. n = 36). Abundance and b~omass in the m~xed 
substrates of the litter-excluded stream declined with each successive year of treatment. I consumers, 
prlmary consumers: Invert, pred., ~nvertebrate predators; Ref., reference stream; Excl., exclus~on 
stream. 

Abundance i SD Biomass + SD 
Trophlc Stream 
group Pretreatment Posttreatment Pretreatment Posttreatment 

Mixed substrates 
Scrapers Ref. 44 i 45 17 i 34 2 i 3 3 2 6  

Excl. 562 i 469 367 i 314 6 + 4 6 i 7 
Shredders Ref, 1360 + 847 2951 + 1884 700 i 306 764 + 472 

Excl. 954 + 588 554 + 431 *" 401 i 338 234 2 250t 
Gatherers Ref. 53.733 i 24.072 81.453 + 41,703 339 + 214 270 i 100 

Excl. 30,940 + 14,431 18,019 + 9874** 1582 104 74+37* 
Fierers Ref. 288 f 337 414 i 398 102 + 93 38 i 25 , , 

cluding inputs of terrestrial litter to a 180- Excl. 323 + 546 188 + 233 35 2 32 27 + 24 
m-long headwater stream, using an over- 1' COnsumers Ref, 55.425 + 24,446 84.835 i 42,617 1143 + 404 1075 i 501 

head canopy and a lateral fence for 3 years Invec, pred, 
Excl. 32,779 i 14,927 19.128 + 10.237*" 600 i 376 341 + 257- 
Ref. 6827 + 261 8 951 9 i 4649 672 + 322 943 i 352 

( 1 1 ) .  W e  evaluated the impact of the basal Excl. 4892 i 2486 2883+212lX* 4032259 179i-140*^ 
resource (terrestrial litter inputs) ill this Salamanders Ref, 5+10 1 1  i 13 58i97 1032 140 
forest stream on  abundance, b~ornass, and Exci. 4 2 6  122" 29 + 35 5 i 19* 
oroduction of animals. Bedrock substrates 
L 

In addition to examining numerical Scrapers Ref. 174 i 162 239 + 266 59 i 73 17 116 
abundances of populations, we calculated Excl. 262 2 195 383 i 537 36 + 54 25 2 47 

Shredders Ref, 578 i 367 901 i 784 82 + 63 73 i 86 
secondary production as the flow (or flux) Excl. 622 i 605 608 + 542 52 2 53 40 + 43 
of mass area-' . tirneP', which incorpo- Gatherers Ref. 15.554 + 7822 11.929 2 7509 186+176 93288 

Excl, 12,191 2 8974 11,613 i 9,590 90 + 50 62 i 47 
J B.  Wallace, Department of Entomology and Institute of Flterers Ref. 1127 i 1446 1181 + 1455 429 2 380 241 + 277 
Ecology, Unversty of Georgia, Athens, GA 30602, USA, Excl. 906 i 764 715 2 1073 337+334 1362115 
S. i. Eaqert, De~artment of Entomoloq~, Un 'vers t~  of 1 consumers Ref. 17.433 i 8363 14,250 + 7566 756 + 565 424 i 290 -. 
Georg~a:ithens, GA 30602, USA, Excl. 13.981 + 9353 13,319 + 10.665 515 2 395 263 f 166 
J L. Meyer, lnstlt~lte of Ecology, Unlverslty of Georgia, invert, pred, ~ ~ f ,  3043 i 1437 2666 2 1471 113+ 64 59 2 42 
Athens, GA 30602, USA Excl. 2532 2 1038 2055 i 1374 97 + 94 42 i 46 
J, R. Webster, Department of Biology, V r g n a  ?olyech- 
n c  n s t t ~ t e  and State Unversty, Blacksburg, VA 24061, Salamanders Ref. 0 + 0  1 + 4  0 2 0 17 i 67 
USA. Excl. 0 +  0 125 0 i 0 12 i 73 

=To whom correspondence should be addressed E-mall: Probability le?,els for RIA of change betv/een reference and treatment stream abundance and bomass !log :x + ' !  
wallace~3sparc.ecology.uga.edlr transformed] are: "P < 0.05 and ="P < 0.001 t R A ,  P = 0.069 for shredder oiomass. 
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mixed substrates, constituting 93 to  97% 
of the  benthic productioll i n  the  reference 
and treatment streains, displayed signifi- 
cant  reductions in either abundance or 
biomass, or both ,  during the  period of 
exclusion (Table 2) .  Several invertebrates 
that  failed to  show significant decreases 
are those known to  feed o n  woody debris 
or organic particles buried in stream sedi- 
inents ( 17) ,  \x-l~ich were present through- 
out the  3-year exclusion period (18) .  

Patterns of secondary production for 
mixed substrates exhibited diverging 
trends in  the  litter exclusion and reference 
streams (Fig. I ) ,  as observed for abun- 
dance a n d  biomass. In  contrast ,  produc- 
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2 
TI 

8,0 7 6 Moss-covered bedrock a 

0 1 2  3 4 
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Fig. 1. Annual secondarg productiv~ty of benth~c 
nvertebrates Year 1 was the pretreatment year 
followed by 3 years of Iltter exclusron. Data are 
shown for (A) m~xed substrate habltats In the ref- 
erence and tter exclus~on streams and (6) moss- 
covered bedrock outcrop hab~tats In the same 
streams. 

2.5  5 0 7 . 5  
Total nonpredator production 
(grams of AFDM m-2 y e a r i )  

Fig. 2. Reationshp between nonpredator nver- 
tebrate production and that of Invertebrate pred- 
ators In mlxed substrates of the liter exclusion 
stream. Each point represents an annual value. 
Four of these years represent prlor stud~es (22), 
and the other 4 years are pretreatment and 3 
years of exclus~on (three ponts In olnier left). 

t ion o n  moss-covered bedrock substrates 
in  the  two streams followed similar pat- 
terns throughout the  4-year period. De- 
spite the  close proxi~ni ty  of mixed sub- 
strate and bedrock habitats, our results 
indicate tha t  different food webs occur 
within these different habitats. These  re- 
sults also show that  geomorphology, that  
is, t h e  physical nature of the  substratum, 
affects resource availability to  consumers. 
Fauna 011 the  steep-gradient, moss-covered 
bedrock habitats rely o n  small particles 
transported by streamflow or trapped with- 
in  t h e  moss ( 1  9 ) .  Fine organic particles 
stored within moss-covered bedrock habi- 
tats did no t  decrease during the  3 years of 
t h e  study, and  total export of fine particles 

Table 2. RIA probablit~es of change in benthc 
populat~ons between reference and treatment 
stream abundance and b~omass [log ix + 1) trans- 
formed data] for specific Invertebrate taxa (orga- 
n~zed by FFG) for m~xed substrates after 3 years 
of I~tter exclusion (n = 48). Insect orders are as 
follows: D, Dlptera: E, Ephemeroptera; Nl ,  non- 
Insect: 0, Odonata; P. Plecoptera; and T, 
Trichoptera. Diplectrona modesta was the only 
taxon that Increased In the treatment stream rea- 
t~ve to the reference stream. 

Taxon Abun- BIO- 
Order dance mass 

Shredder 
PeKoperl~dae P ns 
Leuctra spp. p :+ 
Lepidostoma spp. T :.:ax 

Pycnopsyche spp. T ::: 

Fattigia pele T ns 
Tipula spp. D ns 
Molophilus spp. D ns 
Lipsothrix sp. D ns 

Collector-gatherer 
Nematoda NI 
Olrgochaeta NI ns 
Copepoda N :.:*- 
Paraleptophlebia sp. E ns 
Stenonema spp. t  E %: :+: * 
Lype diversa T ns 
Sc~arldae D ns 

(Bradysia sp .) 
Ch~ronomdae$ D ::::::: 

Collector-filterer 
Diplectrona modesta T :: 

Parapsyche cardis T ns 
Predator 

Lanthus sp. 0 :::::::: 

Cordulegaster sp. 0 :i.r 
Beloneuria sp. p :F 

lsoperla spp. P ns 
Sweltsa lateralis P ns 
Rhyacophila spp. T ns 
Tanypodinae D :*:.::.: 

Ceratopogon~dae D :<:k *: 

Hexatoma spp. D a< :,: 

Dicranota spp. D ns 
Pedicia sp. D >::* 

Probao~li+y levels ave =P i 0 05 ==P < 0 01, ===P < 
0001 and ns, no s~qn~ f~can t  dfference be- 
tween streams 1.FFG -based on g ~ t  content 
analysis tNon-Tanypodnae 

from the  exclusioil streain did not  decrease 
until  t he  third year (20) .  These findillgs 
indicate tha t  this food resource was largely 
maintained throughout the  observation 
period. Thus,  the  bedrock outcrop corn- 
munity is less directly dependent o n  leaf 
litter t h a n  the  community found in  inixed 
substrates (Table  1 and Fig. 1 ) .  

Predators also displayed strong reduc- 
tlolls i n  the  exclusion stream, follo~ving 
t h e  trend of total  ~ r i i n a r y  consumers (Ta-  
bles 1 and 2 ) .  1il;ertebrate predator pro- 
duction in  fishless, headwater streams a t  
Coweeta usual11- represents about 24 to  
33% of total  invertebrate production (14) .  
Predator production declined in the  treat- 
ment  streain during each successive year of 
treatment,  which suggests bot tom-lp  ef- 
fects of exclusion. Some c o ~ n ~ n o n  prey also 
decreased 111 abundance and biolnass dur- 
ing exclusion, such as midge larvae (Or -  
der: Diptera) and copepods, both  of which 
have high growth rates in  these streams 
(21) .  W e  found a strong positive regres- 
sion between total  nonpredator and pred- 
ator production in  the  litter exclusion 
stream (Fig. 2 )  (22) .  Furthermore, the  
slope (0.36) of the  relationship between 
total  invertebrate production and tha t  of 
~ r e d a t o r s  is remarkably similar to  values 
tor efficiency of conv&sion of ingested 
food by invertebrate predators (23)  and 
suggests that  predators are food-limited in  
the  exclusion stream. These data iinply 
that  invertebrate predators in  these head- 
water streams consulne most of the  inver- 
tebrate production, suggesting that  inver- 
tebrate predators may exert top-down ef- 
fects o n  their prey. Over  the  range of 
productivity measured, the  close agree- 
~ n e n t  between predators and  prey in  Fig. 2 
is more consistent wit11 models based o n  
co-limitation by resources and predators 
(24)  rather t h a n  top-down models (25) .  
Others ( 3 ,  26)  have suggested that  top- 
down effects occur primarily in  simple 
plant-herbivore-predator food chaills and  
are not  observed in  speciose commuilities 
with a n  exterllallv subsidized detrital en-  
erg) base. Honever ,  in addltloll t o  t h e  
bottom-LIP effects demonstrated bv litter 
exclusion: top-down effects appeas t o  be 
imvortant in  this detrital-based stream as 
in  other systeins (27) .  

blultiyear manipulations of entire eco- 
systems are important tools to  assess envi- 
ronmental change and the  factors control- " 

ling ecosystem-level processes (28) .  Bot- 
t o m - ~ ~ ~  effects have been studied bv add- 
ing 11;trieilts to  lakes (29)  and  sirearns 
130), but ecosystem-level studies examin- , , ,  

ing the  effects of resource reduction o n  
communities are rare. Yet, lnanv natural 
and anthropogenic disturbance; reduce 
terrestrial litter inp~ l t s  to  streams, for ex- 
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ample, fire (31 ), logging ( 3 2 ) ,  land-use 
change ( 3 3 ) ,  channelization ( 3 4 ) ,  and 
grazing ( 3 5 ) .  However, these activities 
often induce multiple effects that con- 
found analyses of biotic responses to dis- 
turbance: altered hydrology; enhanced 
sediment, nutrient, and solar inputs; and 
shifts in the relative importance of detrital 
inputs and stream primary production. 
These diverse direct and indirect effects 
coinpl~cate analyses of animal community 
resoonse to disturbance. W e  demonstrated 
the consequences of disrupting leaf litter 
inputs to aquatic community structure and 
productiyity, arhile minilnizing the indi- 
rect effects that occur with more complex 
disturbances. 

Exoerimental exclusion of leaf litter has 
demonstrated a strong effect of detrital re- 
source reduction propagated through detri- 
tivores to predators. Our study provides ex- 
perimental evidence of the importance of 
terrestrial-aquatic ecotones to aquatlc dl- 
versity and productiv~ty. Human actions 
have resulted in worldwide loss and degra- 
dation of ripar~an zones ( 3 6 ) ,  thereby alter- 
ing the supply of leaf litter to stream eco- 
systems. Maintaining or reestablishing these 
inputs of rlparian detritus is an essential 
element of conservation or restoration of 
diverse riverine food webs. 
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