
transcription (1, 23). Although it has not 
yet been shown that phosphorylation of 
these transcription factors is responsible for 
elicitor-induced transcription of PR' genes, 
the elicitor-induced relocation of ERM ki- 
nase into the nucleus might link cytosolic 
signal transduction to nuclear activation of 
plant defense genes. 

MAP kinases were first found in yeast 
and animals, where they participate in sig- 
naling cascades linking plasma membrane 
receptors that perceive extracellular signals 
to a variety of cellular response mechanisms 
(24,25). The MAP kinases known in plants 
are activated by environmental stresses and 
plant hormones (26, 27). Our results dem- 
onstrate posttranslational and transcrip- 
tional activation of a plant MAP kinase 
within a signal transduction pathway that 
mediates the response to a pathogen. Acti- 
vation of ERM kinase follows i n ~ u t  from 
receptor-regulated ion channels of the plas- 
ma membrane and precedes or parallels the 
formation of 0,- radicals, which in turn 
activate defense genes and phytoalexin syn- 
thesis (17). 
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Differential Requirements for Survival and 
Proliferation of CD8 Na'ive or Memory T Cells 
Corinne Tanchot, Franqois A. Lemonnier, Beatrice Perarnau, 

Antonio A. Freitas, Benedita Rocha* 

The requisite molecular interactions for CD8 T cell memory were determined by com- 
parison of monoclonal na'ive and memory CD8+ T cells bearing the T cell receptor (TCR) 
for the HY antigen. Na'iveT cells required only the right major histocompatibility complex 
(MHC) class I-restricting molecule to survive; to expand, they also needed antigen. In 
contrast, for survival, memory cells did not require the restricting MHC allele, but needed 
only a nonspecific class I; for expansion the correct class I, but not antigen, was required. 
Thus, maintenance of CD8 T cell memory still required TCR-MHC class I interactions, 
but memory T cells may have a lower functional activation threshold that facilitates 
secondary responses. 

T h e  molecular basis of T cell memorv re- 
mains elusive (1, 2). It is not known if 
memory responses depend exclusively on an 
increased frequency of antigen-specific T 
cells (3) or if "memory T cells" with novel 
biological capacities are generated (4). 
Memory responses have been reported to 
depend on continuous antigenic stimula- 
tion (5), but others have observed the per- 
sistence of increased frequencies of antigen- 
specific CDSt T cells in the apparent ab- 
sence of antigen (6-8). 

We have investigated the conditions 
necessary in vivo for the survival and ex- 
pansion of na'ive and memory antigen- 
s~ecific CD8+ T cells. Because of the 
degeneracy and redundancy of T cell re- 
ceptor (TCR) usage in most immune 
responses, individual clones of antigen- 
soecific T cells "in vivo" cannot be easilv 
examined. T cells may also coexpress dif- 
ferent TCRs, and their behavior mav be 
conditioned by nonspecific antigen effects 
(1.  2). Thus, to characterize the function- . , 

a1 properties and the requirements for per- 
sistence of memory T cells, we used mono- 
clonal T cell populations. 
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Transgenic (Tg) mice bearing a Tg cxp 
TCR specific for the HY male antigen re- 
stricted to major histocompatibility com- 
plex, (MHC) class I H-2Db and deficient in 
the recombinase gene RAG2 (TgRAG2-) 
(9) were used to obtain monoclonal popu- 
lations of CD8+ T cells. In female 
TgRAG2- mice, all T cells positively se- 
lected in, the thymus are CD8+ Tg 
TCRclPt (Fig. 1A). These cells represent a 
pure population of na'ive T cells, because 
cross-reactivity with environmental anti- 
gens cannot be detected: All these cells are 
CD44- and do not divide (1 0, 1 1 ). Study- 
ing these cells ex vivo, we could not detect 
lymphokine mRNAs, but these could be 
induced after in vitro stimulation with 
monoclonal antibodies (mAbs) to CD3 
(anti-CD3). Virgin T cells constitutively 
expressed little perforin and FasL mRNAs, 
which were up-regulated after anti-CD3 
stimulation (Fig. 1B) (1 2). 

To study the TCR interactions required 
for the survival or division of na'ive CD8 T 
cells, we compared their fate after trans- 
fer into irradiated hosts (13) that differed 
in MHC class I and HY antigen expres- 
sion. These hosts were C57BL/6 CD8- 
deficient (14) male (HY+H-2'+) and fe- 
male (HY-H-2'+) mice; female H-2Db- 
deficient mice (15) that lack the MHC 
class I restriction element of this Tg TCR 
(16) but express other MHC class I mol- 
ecules including H-2Kb (HY-H-2Db- 
class I t ) ;  and female class I-  mice defi- 
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cient in both H-2Db and ~2-microglobulin 
(HY-Db-P2M-). These mice were used 
rather than P2M-deficient mice, because 
the latter mice express H-2Db (17)- 
enough to induce deletion of male-specific 
Tg T cells in male mice (1 8). To correlate 
cell survival with interactions with MHC 
class I-restricting element, we used female 
mice expressing H-2Db but lacking H-2Kb 
(HY-Db+Kb-). These host mice were ir- 
radiated (13) and injected 2 days later 
with lo6 nafve cells. Recovery of Tg cells 
was evaluated at days 1, 2, 7, and 13 after 
transfer (19). We studied Tg T cell divi- 
sion 1 week after transfer by monitoring 
bromodeoxyuridine (BrdU) incorporation. 

One day after cell transfer, the fraction 
of donor cells homing to the pool of lym- 
phoid organs studied was the same in all 
groups of host mice (about half of the donor 
cell population) (20). Nafve T cells could 
survive in a resting state in female CD8- 
deficient mice (Fig. 1, C and D); they did 
not incorporate BrdU (21 ), and the number 
recovered was constant from day 1 up to 2 

weeks after injection. Expansion of nafve 
cells required stimulation with male antigen 
(22) because they divided only after transfer 
into male CD8-deficient hosts. Survival of 
nafve T cells required the right MHC-re- 
stricting element. In mice lacking H-2Db or 
expressing no class I (H-2Db-P2M-), nalve 
cells did not survive, but decayed to an 
average of 3% of the injected cohort at 1 
week, 1% at 13 days (Fig. 1D and Table I) ,  
and were undetectable at 2 weeks. This 
decay correlated with the absence of inter- 
actions with the MHC restriction element, 
because nafve H-2Db-restricted Tg cells 
persisted after transfer into H-2Kb-defi- 
cient mice expressing H-2Db (below). Thus, 
as described during thymus positive selec- 
tion, a minimal state of cell activation may 
allow survival in the absence of cell division 
(23). 

We next studied the TCR interactions 
required to maintain CD8+ T cell memory. 
To obtain memory cells, we stimulated fe- 
male nalve Tg T cells with relatively low 
doses of male antigen in vivo in male+ 

female bone marrow (BM) chimeras (24). 
We produced male+female B mice by in- 
jecting a mixture of 90% female and 10% 
male BM cells from CD~E-deficient mice 
into RAG2-deficient female mice (25). 
The hosts did not have endogenous T cells, 
and 10% of BM-derived cells were of male 
origin (Fig. 2A, left). 

Nalve T cells transferred into these chi- 
meras expanded. In chimeras injected with 
0.5 X lo6 nafve T cells, 15 X lo6 to 20 X 
lo6 T cells could be recovered 1 month 
later and for at least 7 months. These cells 
were able to eliminate the antigen in vivo, 
as shown by the disappearance of male BM- 
derived cells (Fig. 2A, middle). These anti- 
gen-experienced Tg T cells proliferated in 
response to the male antigen "in vitro" (8) 
and maintained the capacity to mediate 
effector functions in vivo, because they 
eliminated male BM-derived cells when 
transferred into new set of male+female 
BM chimeras (Fig. 2A, right). As described 
in other systems (6, 7), memory cells in 
these chimeras appeared to survive in the 
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Fig. 2. Tg cells eliminated A 
male antigen-expressing 

B 
cells in vivo. (A) The spleen Recovered d B cells from chimeric spleens 

of male+female chimeras, 
labeled with anti-B220 and 103 
anti-Ly5.1 mAbs. The frac- o 
tion of B220fLy5.1 + indi- lo2 

cates the percentage of 10' 
male B cells present in host 
mice. Labeling in the ab- loo 

100 
10°10 '  102 103 lo4 

sence of T cells (left), 1 lo0 10' lo2 103 100 10' lo2 103 lo4100 10' 102 103 104 
month after injection of 5 X Ly 5.1 
1 O5 LN naive Tg T cells (mid- 
dle), and 5 x lo5 memory Tg T cells, obtained from the LN of malejfemale chimeras injected 6 months 
previously with naive monoclonal T cells. (B) Memory and naive cells in the same antigenic environment. 
Male+female chimeras were injected with Thyl.2+ naive Tg cells. Five to 6 months later a new set of naive 
Thyl .1 + Tg cells was parked during 2 weeks in the same mice. Hosts were then injected with BrdU for 3 days, 
and cell suspensions were labeled with T3.70, anti-CD44, anti-CD8, and anti-Thyl.1 mAbs. Four-color analysis 
and cell sorting were done in a FACS Vintage (Becton Dickinson). Contour graphs show CD44 and Thyl .l 
expression of CD8+ T3.70+-gated T cells. Histograms show the percentage of BrdU+ cells in naive, newly loo lo' O3 lo4 loo lo '  lo' '03 lo4 

injected Thy1 .1 + (left), and resident memory-sorted Thyl.1- Tg cells (right). Similar results were obtained in six BrdU' cells 
mice. 

absence of antigen. Because n o  male cells 
were detected in the spleen (Fig. 2A), 
lymph nodes (LNs), or BM (8), when a new 
set o f  nafve cells were parked for 2 weeks in 
these mice, the cells retained the CD44- 
nafve phenotype and did not  divide (Fig. 
2B). Six months after the apparent elimi- 
nation of antigen, resident memory cells 
were s t i l l  cycling (26) because 20 to 30% 
incorporated BrdU after a 3-day discontin- 
uous pulse (Fig. 2B) (19). Therefore, na'ive 
and antigen-experienced cells behaved dif- 
ferently in the same host antigenic environ- 
ment, suggesting that they may differ in 
their requirements for survival and stimula- 
tion. As evaluated by CD44, CD25, and 
CD69 expression (Fig. 3A), antigen-expe- 
rienced T g  cells have the memory T cell 
phenotype (26). They constitutively ex- 
pressed m R N A  encoding interleukin-2 (IL- 
2) and interferon-y (IFN-y), FasL, and per- 
forin, the latter two to a larger extent than 
nafve cells. This pattern of mRNA expres- 

sion was stable and identical to that detect- cells and other class 11-positive antigen- 
ed in CD44+ non-Tg CD8+ T cells (Fig. presenting cells (APCs)] into irradiated 
3B). hosts (1 3) that differed in MHC class I or 

T o  identify the TCR interactions re- antigen presentation (16). Transgenic T 
quired for the survival or division of mem- cell recovery was determined at days 1, 2, 7, 
ory CD8 T cells, we injected purified and 11 after transfer, whereas T cell divi- 
(>97%) memory populations [depleted of B sion was evaluated by BrdU incorporation 
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at day 7 (Fig. 3, C and D, and Table 1). 
A t  24 hours after transfer, homing of 

memory Tg cells was the same in all groups 
of host mice and similar to that of na'ive Tg 
cells (Fig. 1). When memory Tg cells were 
stimulated after transfer into male CD8- 
mice, their rate of division (>90% BrdU+ 
cells) was higher than that of nai've cells. In 
contrast to nai've cells, memory cells trans- 
ferred into female C D 8  hosts also divided 
extensively (70% BrdU+) (27) and sur- 
vived and divided in mice lacking the 
H-2Db-restricting element (42% BrdUt). 
In mice lacking class I (HZ-Db-P,M- 
mice), about 30% of memory cells still in- 
corporated.BrdU, indicating a response to 
autocrine or environmental growth factors, 
even in the absence of T cell stimulation 
(26). However, this response was not suffi- 
cient to maintain memory T cells, which 
disappeared progressively (Fig. 3, C and D, 
and Table 1). Two weeks after T cell trans- 
fer, donor cells in class I-deficient (H- 
2Db-P,MP) host mice were barely detect- 
able. 

The  disappearance of Tg  T cells after 
transfer into MHC-deficient irradiated 
hosts was not due to natural killer cell 
activity or T cell-mediated graft rejection 
by the irradiated hosts (Fig. 4). CD4+ cells 
from H-2b mice (that could interact with 
host MHC class 11) survived and expanded 
after transfer into all types of MHC class 
I-deficient hosts (Fig. 4A and Table 2). 
When CD8+ T cells from H-2b normal 
mice (which presumably contain mixtures 

of H-2Kb- and H-2Db-restricted nai've and 
memory cells) were transferred, they sur- 
vived and expanded in both H-2D" and 
H-2K" hosts and decayed only after trans- 
fer into class I- (Db-p,M-) hosts (Fig. 4A 
and Table 2) (28). These experiments dem- 
onstrate that the survival of transferred 
CD8+ T cells correlated with their require- 
ment for TCR-MHC class I interactions, 
because if cell decay were due to cell rejec- 
tion, all donor cells (that express both 
H-2Db and H-2Kb) should be recognized 
and eliminated in all types of MHC-defi- 
cient host mice. These results also suggested 
that normal CD8+ T cells, like Tg lympho- 
cytes, also require TCR-MHC class I inter- 

Table 2. Recovery of B6 Ly5.1 T ceiis, 1 week 
after transfer into various irradiated hosts. Host 
mice were injected simultaneously with 1 x 1 O6 
CD8+ and 2 x lo6 CD4+ LN T cells from Ly5.1+ 
B6 donors. Results represent the absolute num- 
bers (x10-5) of CD8+ and CD4+ donor T cells 
recovered in the different hosts in a single experi- 
ment. Similar results were obtained in three other 
experiments (37). 

actions to survive in the periphery. 
Because in the above experiments all 

transferred B6 populations may have under- 
gone expansion whereas na'ive cells re- 
mained resting, the results could be biased if 
host mice would preferentially eliminate 
resting donor cells. T o  exclude this possi- 
bility, we compared the survival of naive Tg 
T cells after transfer into female D b  and 
K b  mice, in which nai've cells do not 
divide (Fig. 4, B and C) .  K" hosts were 
also selected according to the levels of Db 
expression (29). In Kb- hosts expressing 
normal amounts of D" the recovery of na- 
i've donor cells was the same as in class 
I-bearing recipients. In Kb- mice with a 
reduced expression of Db, cell recovery was 
lower, but still higher than that observed in 
D b  mice (Fig. 4C). Therefore, the frequen- 
cy of surviving na'ive T cells recovered in 
the female recipient mice was related to the 
level of class I MHC expression, as de- 
scribed during thymus positive selection 
(30) .  

The disappearance of memory CD8+ 
cells in a class I environment disagrees 
with previous findings describing the sur- 
vival of memory T cells in p , M  hosts (6). 
These differences may be due to the expres- 
sion of MHC class I in P,M- mice (17), 
which interferes with T cell repertoire se- 
lection (18), or to the high number of T 
cells injected, or to both factors: in these 
instances it is likely that donor cells ex- 
pressing class I interact among themselves 
in the host environment. 

Fig. 4. Survival of CD8+ T Q Q C cells after transfer requires A CD8 KO 
TCR-MHC interactions. (A) 
Irradiated (600 R) Ly5.2 host 
mice were injected simulta- I- o c a  

neously with 1 x lo6 CD8+ f O e b  
and 2 x 1 O6 CD4+ LN T 
ceiis from Ly5.1 B6 donors. 
Histograms represent the - 

100 101 102 103 loo 10' lo2 103 100 101 102 103 100 10' 102 103 percentage of CD8+ T cells - 

CD8' cells (%) among donor T cell popula- 0 
E 

tions recovered in the LN of 
host mice 1 week after T cell Q Q t~ n 
transfer. (B) Recovery of na- H-2Kb KO H-2Db KO 
be  Tg cells in Kb- and Db- lo3 z - 

mice. Both types of recipient 
mice were irradiated, inject- 0102 
ed with the same suspen- 2 
sion of 1 x lo6 na'ive Tg hIo1 loo lo1 lo2 103 104 
cells, and studied 1 week Db 

later. Contour plots show 
the Tg populations recov- loo 
ered in the LNs of one Kb- 100 101 102 103 104 100 101 102 103 104 

and one Db- mouse. (C) CD8 
(Left) Absolute number of 
na'iveTg cells recovered in individual mice. K b  mice (open symbols) and Db- these studies expressed normal levels of Db. After intravenous transfer, only 
mice (closed symbols). In K b  mice (a and b), Tg cell recovery was lower than a fraction of injected celis migrates to the spleen and LN (27). The fraction of 
in class I +  mice. These mice down-regulated Db, as shown in the histograms naive T cells recovered in female H-2Kb-deficient mice corresponds to the 
displaying spleen cells from these mice (solid lines) and a normal mouse fraction of donor cells homing to the pool of lymphoid organs studied (27) 
(dotted lines) labeled with anti-Db mAb. All other Kb- mice used in (Fig, I).  
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The fate of memory cells and their level 
of activation varied markedly in different 
hosts (Ag+ right MHC class I > Ag~ right 
MHC > Ag" wrong MHC > no MHC) 
(Fig. 3, C and D). Because all mice received 
the same cohort of cells simultaneously, 
these results indicate that the fate of donor 
cells is conditioned by their interaction 
with the host environment, and not by 
interactions with peptides or MHC class I 
molecules present in the donor cell inocu
lum. The different kinetics of cell growth 
also suggests that the affinity of the TCR-
MHC peptide interactions may determine a 
different expansion rate of memory T cells. 

The properties of primed CD8 + cells we 
describe may explain why injection of a 
virus can sometimes elicit a secondary re
sponse to a previously injected but unrelat
ed virus (2), mimicking the "original anti
genic sin" phenomenon (31), They may 
also explain the kinetics underlying the ed
iting of CD8+ T cell memory. Early after 
antigen stimulation, the increase in the lo
cal production of environment growth fac
tors, as well as the promiscuous stimulation 
of memory cells, may be responsible for the 
bystander activation of memory T cells of 
unrelated specificities (26, 32). The differ
ent expansion rate of memory cells, condi
tioned by the type of TCR-MHC peptide 
interaction (Fig. 3, C and D), will result in 
the progressive selection of antigen-specific 
T cells that will compete out (33) T cells 
bearing unrelated specificities later in the 
immune response (34)-

Because our Tg cells express a single 
TCR, we can exclude nonspecific antigen 
effects caused by endogenous receptor rear
rangements. Thus, in vivo antigen stimula
tion induced permanent changes in the 
physiological status of antigen-specific T 
cells, generating memory cells with unique 
characteristics. These results are similar to 
those obtained with cells from normal mice 
(ll)y so the requirements for survival and 
expansion may be generalized. 

Thus, survival and expansion require
ments of CD8+ T cells in the peripheral 
pools differed for naive and memory cells 
and depended on TCR-MHC peptide inter
actions. Survival of naive T cells required 
interactions with H-2Db, similar to thymic 
positive selection (15). Activation and ex
pansion of naive cells required the presence 
of the male antigen. In contrast, memory 
cells required a nonspecific class I interac
tion for survival and expanded in the pres
ence of the right MHC class I, but in the 
absence of antigen. Because survival of 
memory T cells still required interactions 
with MHC class I, TCR engagement is 
involved in the survival of memory cells. 
We do not know what type of peptide rec
ognition is implicated, but cross-reactive 

peptides may be involved. We cannot ex
clude, however, promiscuous recognition as 
in thymic positive selection. Memory T 
cells may have a lower functional threshold 
that allows their expansion in the absence 
of the nominal male peptide, or their sur
vival in the absence of the selecting 
H-2Db-restricting element. These proper
ties may facilitate both maintenance of 
memory and secondary immune responses. 
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