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Parkinson's disease (PD) is acommon neurodegenerative disorder with a lifetime incidence 
of approximately 2 percent. A pattern of familial aggregation has been documented for the 
disorder, and it was recently reported that a PD susceptibility gene in a large Italian kindred 
is located on the long arm of human chromosome 4. A mutation was identified in the 
a-synuclein gene, which codes for a presynaptic protein thought to be involved in neuronal 
plasticity, in the Italian kindred and in three unrelated families of Greek origin with auto- 
somal dominant inheritance for the PD phenotype. This finding of a specific molecular 
alteration associated with PD will facilitate the detailed understanding of the pathophys- 
iology of the disorder. 

Parkinson's disease (PD) was first de- 
scribed by James Parkinson in 1817 ( 1  ). 
The clinical manifestations of this neuro- 
degenerative disorder include resting 
tremor, muscular rigidity, bradykinesia, 
and postural instability. A relatively spe- 
cific pathological feature accompanying 
the neuronal degeneration is an intracyto- 
plasmic inclusion body, known as the 
Lewy body, which is found in many re- 
gions, including the substantia nigra, locus 
ceruleus, nucleus basalis, hypothalamus, 
cerebral cortex. cranial nerve motor nu- 
clei, and the central and peripheral divi- 

M. H. Polymeropoulos, C. Lavedan, E. Leroy, S. E. Ide, A. 
Dehejia, J. Rubenstein, R. Boyer, R. L. Nussbaum, Lab- 
oratory of Genetic Disease Research, National Human 
Genome Research Institute, National lnsttutes of Health, 
Bethesda, MD 20892-1 430, USA. 
S. Chandrasekharappa, B. Pike, H. Root, A. Dutra, Lab- 
oratory of Gene Transfer, National Human Genome Re- 
search lnsttute, National Institutes of Health, Bethesda, 
MD 20892-1 430, USA. 
L. I. Golbe, W. G. Johnson, E. S. Stenroos, R. C. Duvol- 
sin, A. M. Lazzarini, University of Medicine and Dentistry 
of New Jersey, Robert Wood Johnson Medical School, 
Piscataway, NJ 08854, USA. 
G. Di lorio, lnst~tuto di Scienze Neurologiche, Faculta di 
Medicina, Seconda Universlta degli Studi di Napoli, Na- 
ples, Italy. 
T. Papapetropoulos and A. Athanassiadou, University of 
Patras Medical School, Patras, Greece. 

*To whom correspondence should be addressed. 
?These authors contributed equally n this work. 

sions of the autonomic nervous svstem (1 ). . , 

In many cases a heritable facior predis- 
Doses to the develo~ment of the clinical 
syndrome (2) .  We have recently shown that 
genetic markers on human chromosome 
4q21-q23 segregate with the PD phenotype 
in a large family of Italian descent (3). The 
clinical picture of the PD phenotype in the 
Italian kindred has been'well documented 
to be typical for PD, including Lewy bodies, 
with the exceution of a relativelv earlier age 
of onset of ilfness at 46 t 13 yiars. In tcis 
family the penetrance of the gene (the pro- 
portion of people with the genotype who 
actually manifest the disease) has been es- 
timated to be 85%, suggesting that a single 
gene defect will be sufficient to determine 
the PD phenotype. 

Alpha-synuclein, a presynaptic nerve 
terminal protein, was originally identified 
as the precursor protein for the non-p 
amyloid component of Alzheimer's disease 
amyloid plaques NAC (4). The human a 
synuclein gene was previously mapped in 
the 4q21-q22 region (5). Genotype anal- 
ysis in the Italian PD kindred with addi- 
tional genetic markers showed recombina- 
tion events. One recombination was ob- 
served for genetic marker D4S2371 at the 
centromeric end of the PD interval and 
one recombination was inferred for marker 
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D4S2986 at the telomeric end of the in- 
terval. These recombinations redefined 
the location of the PD gene to an interval 
of approximately 6 cM between markers 
D4S2371 and D4S2986 (6). A minimal 
physical contig of yeast artificial chromo- 
some (YAC) clones was constructed to 
span the interval from marker D4S237 1 to 
marker D4S2986 (6). Using this contig, 
we established that the a-synuclein gene 
is located within the D4S2371-D4S2986 
interval, just telomeric to marker 
D4S2371. Thus, a-synuclein represented 
an excellent candidate gene for PD. Se- 
quence analysis of the fourth exon of the 
a-synuclein gene (7) revealed a single 
base pair change at position 209 from G to 
A (G209A) relative to the published se- 
quence of the gene (GenBank ID 
L08850), which results in an Ala to Thr 
substitution at position 53 (Ala53Thr) 
and the creation of a novel Tsp45 I re- 
striction site (Fig. 1). Mutation analysis 
for the G209A change in the Italian kin- 
dred showed complete segregation with 
the PD phenotype with the exception of 
individual 30, who is affected but not 
carrying this mutation (Fig. 2A). This in- 

dividual apparently inherited a different 
PD mutation from his father because we 
have shown that he shares a genetic hap- 
lotype with his unaffected maternal uncle, 
individual 3, for genetic markers in the PD 
linkage region. 

The frequency of this variation was 
studied in two general population samples, 
one consisting of 120 chromosomes of the 
parents of the CEPH (Centre d'Etude du 
Polymorphisme Humain) reference fami- 
lies, and the other consisting of 194 chro- 
mosomes of unrelated individuals from the 
blood bank in Salemo, Italy, a city near 
the town from which the family originat- 
ed. Of these 314 chromosomes, none was 
found to carry the G209A mutation. Fifty- 
two patients of Italian descent with spo- 
radic PD were also screened for the muta- 
tion, along with five individuals who had 
been used to identify previously unpub- 
lished Greek families (6). 

The Ala53Thr change was found to be 
present in three of the Greek kindreds, and 
it segregated with the PD phenotype (Fig. 
2B). In those three Greek kindreds the age 
of onset for the disease is relatively early, 
ranging from the mid30s to the mid-50s. 

Fig. 1. DNA sequence of the PCR product used for mutation detection. Oligonucleotide primers are 
shown by arrows and the numerals 3 and 13. lntron sequence is shown in lower case and exon 
sequence in upper case. Amino acid translation of the exon is shown below the DNA sequence. The 
circled base represents the G209A change in the mutant allele. The resulting amino acid Ala53Thr 
change is represented by the circled amino acid. 

The Ala53Thr substitution in four indepen- 
dent PD families and its absence from 314 
control chromosomes provides the strongest 
genetic evidence that this mutation in the 
a-synuclein gene is associated with the PD 
phenotype in these families. 

We have also demonstrated by amplifi- 
cation by the polymerase chain reaction 
(PCR) of reverse-transcribed mRNA (RT 
PCR) that the mutant allele is transcribed 
in the lymphoblast cell line of an affected 
individual from the Italian kindred (Fig. 3) 
(8). These data indicate that the mutant 
allele is transcribed and, although no pro- 
tein expression data are yet available, it is 
reasonable to assume that the mutant pro- 
tein is indeed expressed. 

The Ala53Thr substitution is localized 
in a region of the protein whose secondary 
structure predicts an a helical formation, 
bounded by P sheets. Substitution of the 
alanine with threonine is ~redicted to dis- 
rupt the a helix and extend the P sheet 
structure. Beta pleated sheets are thought to 
be involved in the self-aggregation of pro- 
teins, which could lead to the formation of 
amyloid-like structures (9). This was al- 
ready tested in the case of NAC35, the 
35-amino acid ~ e ~ t i d e  derived from . L 

a-synuclein that was first isolated from 
plaques found in patients with Alzheimer's 
disease (4, 9). NAC35 is located in the 
middle of the a-synuclein molecule and 
extends from amino acid position 61 to 95. 
Residue 53, which is mutated in PD, is 
outside the NAC35 peptide found in amy- 
loid plaques. However, the true size of the 
peptide involved in the plaques is not 
known as the protease used to isolate the 
peptide cuts at lysine 60 of the a-synuclein 
protein. In cross-linking experiments with 
p amyloid, it was demonstrated (9) that 

11s imrnedi- 
cf fragment 

2. Mutation analysis of the G209A Fig. 3. Mutation analysis of the G209A change in 
3e is shown in a subpedigree of RT PCR products. Lane 1 : 100-bp ladder, lanes 2 
:alian kindred (A) and the three and 3, normal control; lanes 4 and 5, PD patient; 

,- . , GR2, GR5) Greek PD kindreds lane 6, negative control without RTenzyme. Sizes 
(B). Filled symbols represent affected individuals. Numerical identifiers denote the individua are indicated on the right in base pairs. Lanes 2 
ately above. Tsp45 I digestion of PCR products (5) is shown at the bottom of the figure, ant and 4 show uncut DNA and lanes 3 and 5 show 
sizes are indicated on the right in base pairs. DNA cut with Tsp45 1. 
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residues 1 to 56 and 57 to 97 specifically 
bind amyloid and that a synthetic peptide 
consisting of residues 32 to 57 performed 
similarly. 

Three members of the svnuclein familv 
have been characterized i; the rat, with 
SYN1 exhibiting 95% similarity to the 
human a-synuclein protein (10). SYN1 of 
the rat is expressed in many regions of the 
brain, with high levels found in the olfac- 
tory bulb and tract, the hippocampus, den- 
tate gyrus, habenula, amygdala, and piri- 
form cortex, and intermediate levels in the 
granular layer of the cerebellum, substan- 
tia nigra, caudate-putamen, and dorsal ra- 
phe (10). This pattern of expression coin- 
cides with the distribution of the Lewv 
bodies found in brains of patients with 
Parkinson's disease. Decreases in olfaction 
often accompany the syndromic features of 
Parkinson's disease. and it is orooosed that . . 
in many cases hyposmia (decreased sense 
of smell) is an early sign of the illness (1 1 ). 

In the zebra finch the homolog to 
a-synuclein, synelfin, is thought to be in- 
volved in the process of song learning, sug- 
gesting a possible role for synuclein in mem- 
ory and learning (12). In contrast to hu- 
mans, rats have a threonine at the same 
position in their homologs to the human 
a-synuclein gene (Fig. 4). Similarly, the 
zebra finch synelfin carries a threonine, 
whereas both Bos taurus and Torpedo cali- 
fornica (13) do not. There are no reports 
that suggest the presence of Lewy bodies in 
the brains of the rat or the zebra finch or a 
phenotype resembling that of PD. Lack of 
any phenotype could be explained by a 
combination of factors, such as the relative- 

ly short life-span of rodents, the need for 
interaction with other cellular components 
not present in the rat, absence of a critical 
environmental trigger in the rodents, or a 
requirement for heterozygous status for the 
production of a phenotype. 

Studies of early onset AD have previous- 
ly documented that missense mutations can 
cause an adult onset neurodegenerative dis- 
order. Of the 31 mutations described so far 
in the loci for presenilin 1 and 2, 30 were 
missense and 1 was a splice variant (14). 
Missense mutations in the prion protein 
have also been implicated in the amyloid 
production seen in Gerstmann-straiissler- 
Scheinker and Creutzfeld-Jakob diseases, 
both forms of spongiform encephalopathy 
(15). Studies in these neurodegenerative 
disorders have pointed to the importance 
of the physical chemical properties of mu- 
tant cellular proteins in initiating and 
propagating neuronal lesions leading to 
disease. Similar studies in the synuclein 
protein family may provide valuable in- 
sights into the etiology and pathogenesis 
of PD. 

Although the mutation identified in the 
a-synuclein gene is unlikely to account for 
the majority of sporadic and familial cases 
of PD, it may account for a significant 
proportion of those early-onset families 
with PD characterized by a highly pene- 
trant, autosomal dominant inheritance. 
Even if the mutation we have described is 
directly related to only a small fraction of 
the total number of PD patients, it provides 
a clue that should lead to the understanding 
of the underlying pathways resulting in the 
symptoms of PD. 

10 20 30 
I I I 

1 M D V F M K G L S K A K E G V V A A A E K T K Q G V A E A A G K T - - -  - - - -  - K E V L Y  Homosapians 
1 M D V F M K G L S K A K E G V V A A A E K T K Q G V A E A A G K T -  - - - - - - - K E V L Y  Rattusnowegicus 
1 M D V F M K G L S M A K E G V V A A A E K T K Q G V T E A A E K T - - - - - - K E G V L Y  BostauNs 
1 M D V F M K G L S K A K E G V V A A A E K T K Q G V A E A A G K T -  - - - - - - - - -  - K E G V L Y  Serlnuscanaria 
1 M D V L K K G F S F A K E G V V A A A E K T K Q G V Q D A A E K T K Q G V Q D A A E K T K E G V M Y  Torpadocallfornica 

40 b G S K T K E G V V k G @ T V A E K T A E Q V T N V G G A i V T G V T A V A Q A T V E G A G S I A  Homosapiens 
40 V G S K T K E G V V H G V T T V A E K T K E Q V T N V G G A V V T G V T A V A Q K T V E G A G N I A  Ranusnowegicus 
40 V G S K T K E G V V Q G V A S V A E K T K E Q A S H L G G A V F S G A G -  - - - -  - - - - - - N I A  Bostaurus 
40 V G S R T K E G V V H G V T T V A E K T K E Q V S N V G G A V V T G V T A V A Q K T V E G A G N I A  sarlnuscanana 
51 V G T K T K E G V V Q S V N T V T E K T K E Q A N V V G G A V V A G V N T V A S K T V E G V E N V A  Torpedocal~fornlca 
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90 A A T G F V K K D Q L G K - N - - E E G A P Q - - E G I - -  - L E D - - M P V D P D N E A Y E M P S  Homosaplens 
90 A A T G F V K K D Q M G K - G -  - E E G Y P Q - - E G I - L E D - - M P V D P S S E A Y E M P S  Rattusnoweglcus 
79 A A T G L V K K E E F P T - D L K P E E V A Q - - E A A E E P L I E - - P L M E P E G E S Y E E Q P  Bostaurus 
90 A A T G L V K K D Q L A K Q N - - E E G F L Q - - E G M - - V N N T G A A V D P D N E A Y E M P P  Serlnuscanana 
101 A A S G V V K L D E H G R - E I P A E Q v A E G K Q T T Q E P L V E -  - A T E A T E -  - - - -  - - - Torpedocallfornlca 

Homo saplens 
RattUS noweglcus 
Bos taurus 
Sennus canarla 
Torpedo californica 

Fig. 4. Sequence alignments of a-synuclein homologues in different species. Accession numbers for 
the sequences used were as follows: Homo sapiens Swiss-Prot P37840, Rattus non/egicus Swiss-Prot 
P37377, Bos taurus Swiss-Prot P33567, Serinus canaria GenBank L33860, and Torpedo californica 
Swiss-Prot P37379. Numbering on top of the alignments is according to the human sequence. Amino 
acid 53, which is the site of the Ala53Thr change, is circled. 
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