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In Vivo Endoscopic Optical Biopsy with Optical 
Coherence Tomography 

Guillermo J. Tearney, Mark E. Brezinski,* Brett E. Bouma, 
Stephen A. Boppart, Costas Pitris, James F. Southern, 

James G. Fujimoto 

Current medical imaging technologies allow visualization of tissue anatomy in the human 
body at resolutions ranging from 100 micrometers to 1 millimeter. These technologies 
are generally not sensitive enough to detect early-stage tissue abnormalities associated 
with diseases such as cancer and atherosclerosis, which require micrometer-scale 
resolution. Here, optical coherence tomography was adapted to allow high-speed vi- 
sualization of tissue in a living animal with a catheter-endoscope 1 millimeter in diameter. 
This method, referred to as "optical biopsy," was used to obtain cross-sectional images 
of the rabbit gastrointestinal and respiratory tracts at 10-micrometer resolution. 

Medical  imaging technology has advanced 
over the last 20 years to provide physicians 
with indisoensable information on the mac- 
roscopic anatomy of patients. Imaging tech- 
nlques such as conventional x-ray radiogra- 
phy, magnetic resonance imaging, computed 
tomography, and ultrasonography have al- 
lowed the noninvasive investigation of 
large-scale structures in the human bodv - 
with resolutions ranging from 100 p,m to 1 
mm. However, this resolution is insufficient 
for the identification of many important 
pathologies, such as early neoplastic changes 
or coronary atherosclerotic plaques pedis- 
posed to rupture. Identification of these 
abnormalities requires technologies that re- 
solve clinically relevant tissue microstruc- 
ture in the range of conventional biopsy. 

Optical coherence tomography (OCT) 
is an optical imaging technique that allows 
high-resolution cross-sectional imaging of 
tissue microstructure (1). OCT is analogous 
to ultrasound imaging except that infrared 
light waves rather than acoustic waves are - 
used. A n  optical beam is focused into the 
tissue, and the echo time delay of light 
reflected from internal microstructure at 
different d e ~ t h s  is measured bv interferom- 
etry. Image information is obtained by per- 

forming repeated axial measurements at dif- 
ferent transverse positions as the optical 
beam is scanned across the tissue. The re- 
sulting data constitute a two-dimensional 
map of the backscattering or reflectance 
from internal architectural morphology and 
cellular structures in the tissue. 

OCT is attractive for clinical imaging 
for three reasons. (i) The typical OCT im- 
age has an  axial resolution of 10 p,m, up to 
10 times higher than any clinically avail- 
able diagnostic imaging modality. (ii) Be- 
cause OCT systems can be constructed with 
fiber optical components used in telecom- 
munications, they are relatively inexpen- 
sive and portable. (iii) Fiber optic systems 
can be incorporated into catheters or endo- 
scopes, allowing high-resolution images of 
internal organ microstructure. 

Initially, OCT was applied to imaging 
the transparent tissue of the eye (2,  3). 
Clinical studies have shown that OCT 
provides high-resolution cross-sectional 
images of a wide range of retinal macular 
diseases (4, 5). Recently, imaglng to 
depths of 2 to 3 mm in nontransparent 
tissue was achieved by use of longer wave- 
lengths in the near infrared (1 ,  6-9). The  
identification of in vitro pathology has 
been verified in tissue from the cardiovas- 
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OCT catheter-endoscope. 
A schematic of the endoscopic OCT 

imaging system is shown in Fig. 1A. A 
low-coherence length light source is cou- 
pled into a fiber optic Michelson inter- 
ferometer. The catheter-endosco~e is in 
one arm of the interferometer and a scan- 
ning temporal delay is in the other arm. 
Interference is observed only when the path 
lengths of the interferometer arms are 
matched to within the coherence length of 
the source. The interference signal is de- 
tected and demodulated to yield the echo 
delay of backscattered light from the tissue. 
Images are acquired by scanning the beam 
position on the tissue and displaying the 
resulting data in image form. 

To achieve high resolution with rapid 
image acquisition rates, we constructed a 
short-pulse, Kerr-lens modelocked Cr4+:for- 
sterite laser and used it as the light source for 
the OCT system (1 1, 12). This laser pro- 
duced higher power and shorter coherence 
length light than conventional low-coher- 
ence superluminescent diode sources used in 

previous systems (1, 6-9). In addition, self- 
phase modulation was used to broaden the 
optical spectrum and enhance imaging reso- 
lution. The output power was 30 mW (10 
mW on the tissue) with a Gaussian full- 
width at half-maximum (FWHM) spectral 
bandwidth of 75 nm centered at 1280 nm. 
These parameters corresponded to a free- 
space axial resolution of 10 km and a signal 
to noise ratio (SNR) of 110 dB. 

With previous OCT systems, the opti- 
cal delay in the reference arm was varied 
with either a linearly translating galva- 
nometer or by stretching an optical fiber 
with a piezoelectric crystal (1, 13, 14). 
However, commercial galvanometers do 
not generate sufficient mechanical trans- 
lation rates to allow imaging in real time 
(14). Piezoelectric fiber stretchers allow 
rapid scanning, but they suffer from high 
power requirements, nonlinear fringe 
modulation due to hysteresis, uncompen- 
sated polarization dispersion matches, and 
poor temperature stability. For these rea- 
sons, we designed a high-speed optical 

Sample Catheter- B 
arm endoscope Optical fiber 

(angle cleaved) 
I I 

Grin len; \ 
(angle polished) 

outer sheath 

Fig. 1. (A) Schematic of the high-speed endoscopic OCT system. (B) Schematic of the distal optics of 
the second-generation OCT catheter-endoscope. The angle cleaving the optical fiber and the angle 
polishing the GRIN lens minimized internal reflections. (C) Photograph of the OCT catheter-endoscope 
distal optics. 

delay line using phase control techniques 
originally developed for femtosecond pulse 
shaping (15, 16). This device can be con- 
structed with common optical compo- 
nents, has modest power requirements, is 
repeatable, and is temperature stable. 

The phase control optical delay line con- 
tained a lens-grating pair to Fourier transform 
the temporal profile of the low-coherence 
(broad-spectrum) light in the reference arm. 
A mirror mounted to a galvanometer, placed 
at the Fourier plane, allowed angular tilt to be 
mapped to group delay (Fig. 1A). The group 
delay was varied by rapidly changing the angle 
of the mirror mounted to the galvanometer, 
allowing the acquisition of 2000 axial scans 
per second with a total optical path length 
delay of -3 mm. This method also permitted 
group and phase delay to be independently 
controlled so that the interferometric modu- 
lation frequency produced by the scanning 
delay could be selected commensurate with 
higher performance detection and data acqui- 
sition electronics. 

A transverse scanning catheter-endo- 
scope was integrated into the OCT system 
to facilitate high-speed in vivo intralumi- 
nal imaging of internal organs (Fig. 1, B 
and C). The catheter-endoscope consisted 
of an encased, rotating hollow cable car- 
rying a single-mode optical fiber. The 
beam from the distal end of the fiber was 

Fig. 2. OCT imaging of the rabbit esophagus in vivo (22). (A) This image allows visualization of the 
esophageal layers of the rabbit including the mucosa (m), the submucosa (sm), the inner muscular layer 
(im), the outer muscular layer (om), the serosa (s), and the adipose and vascular supportive tissues (a). 
(B) A blood vessel (v) is apparent within the submucosa of the esophagus. (C) Corresponding histology 
for (B) (H&E stain). Bars, 500 Fm. 
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Fig. 3. OCT imaging of a rabbi trachea in vivo 
(22). (A) This image allows visualization of distinct 
architectural layers, including the epithelium (e), 
the mucosal stroma (m), cartilage (c), and adipose 
tissue (a). The trachealis muscle (tm) can be easily 
identified. (B) Corresponding histology ( H E  
stain). Bar, 500 pm. 



focused by a graded index (GRIN) lens 
and was directed perpendicular to the 
catheter axis by a microprism (Fig. 1, B 
and C) .  T h e  distal optics were encased in 
a transparent housing. T h e  beam was 
scanned circumferentially a t  four revolu- 
tions per second by rotation of the cable, 
fiber, and optical assembly inside the stat- 
ic housing. T h e  catheter-endoscope was 
redesigned from a n  original prototype (1 7) 
to decrease its diameter, increase imaging 
speed, and reduce parasitic internal reflec- 
tions. T h e  confocal uarameter of the distal 
lens was 1.9 mm, which corresponded to a 
focused beam diameter of 40 um. Power 
loss caGsed by suboptimal colpling and 
internal reflection within the catheter was 
3 to 4 dB. T h e  overall S N R  of the O C T  
system with the catheter-endoscope was 
-106 dB. T h e  catheter-endoscope had a 
diameter of 1 mm, which is small enough - 
to allow imaging in a human coronary 
artery or access through the flush port of a 
standard endoscope. 

O C T  images of the in  vivo rabbit 
esophagus allowed visualization of all lay- 
ers of the esophageal wall (Fig. 2, A and 
B). For example, the innermost layer, the 
mucosa, was readily distinguished owing to 
its low reflectivitv comuared with the 
submucosa. Vascular structures were also 
identified within the wall (Fig. 2B). These 
high-resolution images demonstrate the 
ca~abi l i tv  of OCT to both resolve micro- 
structural detail and image the entire 
rabbit esophagus to  the serosa. In  vivo 
OCT images of the rabbit trachea permit- 
ted differentiation of the ~seudostratified 
epithelium, mucosa, and surrounding hya- 
line cartilage (Fig. 3A). Because most neo- 
plasms of both the esophagus and respira- 
tory tract originate in the  epithelium, the 
ability of O C T  to precisely identify the 
mucosa could have important clinical 
implications. 

A technology capable of performing 
optical biopsy should prove to be a pow- 
erful diagnostic modality in  clinical med- 
icine. Optical biopsy is defined here as 
imaging tissue microstructure a t  or near 
thevleiel  of histopathology without the  
need for tissue excision. A t  least three 
clinical scenarios exist in  which optical 
biopsy will likely have a considerable im- 
pact o n  patient management. T h e  first is 
in  situations in  which sampling errors se- 
verely restrict the  effectiveness of exci- 
sional biopsy, such as the  high failure rates 
associated with blind biopsies used to 
screen the premalignant conditions of ul- 
cerative colitis or Barrett's esophagus 
(1  8 ) .  A need also exists for optical biopsy 
when conventional excisional biopsy is 
potentially hazardous. Examples of vulner- 
able regions include the central nervous 

system, the vascular system, and articular 
cartilage. Finally, the ability to  image at  
the cellular level could improve the effec- 
tiveness of many surgical and microsurgi- 
cal procedures including coronary atherec- 
tomy, transurethral prostatectomies, and 
microvascular repair (8 ,  19, 20). 
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Exchange of Protein Molecules Through 
Connections Between Higher Plant Plastids 
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Individual plastids of vascular plants have generally been considered to be discrete 
autonomous entities that do not directly communicate with each other. However, in 
transgenic plants in which the plastid stroma was labeled with green fluorescent protein 
(GFP), thin tubular projections emanated from individual plastids and sometimes con- 
nected to other plastids. Flow of GFP between interconnected plastids could be ob- 
served when a single plastid or an interconnecting plastid tubule was photobleached and 
the loss of green fluorescence by both plastids was seen. These tubules allow the 
exchange of molecules within an interplastid communication system, which may facil- 
itate the coordination of plastid activities. 

Plastids are plant cell organelles that per- fatty acids, carotenes, purines, and pyrimi- 
form metabolic and biosynthetic reactions, dines. Plastids contain multiple copies of a 
including carbon fixation and synthesis of genome that encodes a subset of the or- 

ganelle's R N A  and protein molecules ( I  ). 
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