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\ Single Polymer Dynamics 
in an Elongational Flow 

Thomas T. Perkins, Douglas E. Smith, Steven Chu* 

The stretching of individual polymers in a spatially homogeneous velocity gradient was 
observed through use of fluorescently labeled DNA molecules. The probability distri- 
bution of molecular extension was determined as a function of time and strain rate. 
Although some molecules reached steady state, the average extension did not, even after 
a -300-fold distortion of the underlying fluid element. At the highest strain rates, distinct 
conformational shapes with differing dynamics were observed. There was considerable 
variation in the onset of stretching, and chains with a dumbbell shape stretched more 
rapidly than folded ones. As the strain rate was increased, chains did not deform with 
the fluid element. The steady-state extension can be described by a model consisting 
of two beads connected by a spring representing the entropic elasticity of a worm-like 
chain, but the average dynamics cannot. 

T h e  behavior of dilute polymers in elon- 
gational flow has been an outstanding prob- 
lem in polymer science for several decades 
(1,  2). In elongational flows, a velocity 
gradient along the direction of flow can 
stretch polymers far from equilibrium. Ex- 
tended polymers exert a force back on the 
solvent that leads to the important, non- 
Newtonian properties of dilute polymer so- 
lutions, such as viscosity enhancement and 
turbulent drag reduction. 

A homogeneous elongational flow is de- 
fined by a linear velocity gradient along the 
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direction of flow such that v, = 8y, where 8 
av,/dy, the strain rate, is constant. Theory 

suggests that the onset of polymer stretch- 
ing occurs at a critical velocity gradient or 
straln rate of 8, of 

where T~ is the longest relaxation time of 
the polymer (3). For 8 < 8,, the molecules 
are in a "coiled" state. But as E is increased 
above E,, the hydrodynamic force exerted 
across the polymer just exceeds the linear 
portion of the polymer's entropic elasticity, 
and the polymer stretches until its nonlin- 
ear elasticity limits the further extension of 
this "stretched" state. De Gennes predicted 
that this "coil-stretch transition" would be 

sharuened bv an  increase in the hvdrodv- 
namic drag df the stretched state relative ;o 
the drag of the coiled state (1 ). " . , 

In many types of elongational flows, 
such as flow through a pipette tip, the res- 
idency time t,,, of the polymers in the ve- 
locity gradient is limited. To  increase t,,,, 

flows in which there is a stagnation point 
are often used. As molecular traiectories 
approach the stagnation point, t,,, diverges. 
The classical techniques for inferring the 
degree of polymer deformation have been 
light scattering (4,  5 )  and birefringence 
(6-9). For example, Keller and Odell re- 
ported a rapid increase in the birefringence 
for 8 above 8, followed by a saturation (6). 
Such saturatibn was interpreted as an  indi- 
cation that the polymers had reached equi- 
librium in a highly extended state (10). 
Molecular weieht analvsis showed some " 
chains are fractured in half, further support- 
ing the hypothesis that the polymers 
reached full extension (8, 1 1 ). However, 
light-scattering experiments imply deforma- 
tions of only two to four times the equilib- 
rium size (4,  5). But, these "bulk" measure- 
ments average over a macroscopic number 
of molecules with a broad range of t,,,. 

Moreover, only recent experiments have 
been dilute enough to prevent the polymers 
from altering the flow field (9). 

Many rheological effects also remain un- 
explained. James and Saringer measured a 
pressure drop in a converging flow that was 
significantly greater than that predicted by 
simple models (1 2).  Recently, Tirtaatmadja 
and Sridhar measured extensional viscosi- 
ties q, in filament stretching experiments 
that were several thousand times greater 
than the shear viscosities (13). A t  large 
deformations, qE saturated, suggesting again 
that the polymers were fully extended. 
However, the measured stress was sienifi- 

u 

cantly lower than expected for fully extend- 
ed polymers, implying that full extension 
had not actually been achieved (14). Also, 
the stress relaxation in such exueriments 
contained both a strain-rate independent 
"elastic" and a strain-rate deoendent "dissi- 
pative" component. The molecular origin of 
the dissipative component is uncertain 
(15). Examples such as these indicate that, 
even after a tremendous amount of studv, 
the deformation of polymers in elongational 
flows is still poorly understood (14, 16). 

We  report the direct visualization of 
individual polymers in  an  elongational 
flow. The  conformation and extension of 
each molecule was measured as a function 
of 8 and t,,,, thereby eliminating the am- 
biguities in conformation and t,,,. We fur- 
ther eliminated polymer-polymer interac- 
tions and polymer-induced alterations of 
the flow field by working with single iso- 
lated molecules. The  inherent uniformity 
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in size of lambda bacteriophage DNA 
[A-DNA, LsmZned = 22 pm (1 7)] also elim- 
inated complications due to polydispersity 
and enabled accurate calculation of en- 
semble averages (18). Thus, we deter- 
mined the probability distribution of mo- 
lecular extension rather than just an av- 
erage or a moment of that distribution. 
Another advantage is that the entropic 
elasticity (19, 20) and hydrodynamic drag 
(1 7 ,  21 , 22) of single DNA molecules 
have been previously characterized. 

Using a microfabricated flow cell, we 
generated a planar elongational flow with a 
cross-slot geometry adapted for fluorescence 
microscopy (23). The main design consider- 
ation of the flow cell was to ensure that we 
studied dynamics of polymers unwinding 
from equilibrium (24). Our imaging area was 
100 pm by 94 pm with the stagnation point 
15 pm from the center of one side. The 
onset of the elongational flow, where tres = 
0, was 960 pm up the inlet channel from the 
stagnation point. 

By tracking individual molecules, we 
measured the extension x and tres of each 
molecule in our imaging area. Some mole- 
cules deformed only slightly, whereas others 
rapidly reached a steady-state extension 
(Fig. 1A). This large and previously unob- 
servable heterogeneity was perhaps unex- 
pected because these molecules were iden- 
tical in size and had experienced the same b 
and t,,,. From an ensemble of individual 
measurements, we calculated the average 
extension (x(tres)) as well as the time evo- 
lution of the probability distribution for 
molecular extension (Fig. 1 B). 

We characterized the conformation of 
each polymer in the ensemble. In general, 
the molecules were found in one of seven 
conformations which we refer to as dumb- 
bell, half-dumbbell, folded, uniform, kinked, 
coiled, or extended. The first three types 
were dominant at b = 0.86 s-'. As shown in 
Fig. 2A, these are highly nonequilibrium 
conformations, and they occurred only at 
higher strain rates (b > 0.5 s-') (25). In this 
case, the molecules were subject to a b sig- 
nificantly greater than the inverse relaxation 
time [ ~ i I f ,  = 0.26; T , , ~  = 3.89 s (26)l. For 
A-DNA (-400 persistence lengths), we saw 
only single folds at the highest b investigat- 
ed. However, for longer molecules, we ob- 
served multiple folds (27). 

There were clear differences in dynam- 
ics for the three dominant conformations. 
To  highlight these differences, we plotted 
data, using only those molecules that best 
typified each conformational class. Mole- 
cules in a dumbbell configuration 
stretched significantly faster than folded 
ones (Fig. 2B). In addition, the residency 
time to,,, at which significant stretching 
begins for any particular molecule was 

highly variable (28). 
A n  analysis of the rate of stretching x 

as function of x shows that once a mole- 
cule in a dumbbell configuration starts to 
stretch, its dynamics follows a specific 
time evolution (Fig. 2C, inset). This result 
indicates that the data would approxi- 
mately collapse onto a single "maste,r 
curve" by sliding the individual curves 
along the time axis. Up to xlL = 0.6, we 
observed a linear increase in (x(x)) with x 
up to x = 12 pm at b = 0.86 s-'. When 
integrated, this yields an initial exponen- 
tial growth of the master curve. We show 
three such master curves generated from 
the molecules that best typify each of the 
dominant conformations (Fig. 2C). For 
comparison, we show (x(tres)) for the full 
data set as well as for several of the differ- 
ent conformational classes arising from 
the first, general classification (Fig. 2D). 
Because of the large variation in t,,,, the 
master curve better represents the un- 
winding dynamics of individual molecules 
and is different in shape than (~(t,,,)). 

We plotted the fractional average exten- 
sion (x)/L as a function of the accumulated 
fluid strain or "Henky stain" (E = bt,,,) (Fig. 

3A). By analyzing the subset of molecules 
that reached steady state (Fig. 3B, inset), we 
determined the steady-state extension xSedy 
as a function of the dimensionless strain 
rate or "Deborah number" b ~ , , ~  (Fig. 3B). 
Note that xsrendy rises sharply at a critical 
strain rate of bc~relax G 0.4 and that for b G 

0.9 bc the fractional size of fluctuations is 
large (a, /xsWdy = 0.4). Similar behavior is 
often seen at phase transitions. In compar- 
ison with classical bulk measurements, we 
also plotted a spatio-temporal average xhk 
of all our data (Fig. 3B). 

In a linear velocity-gradient flow (bfluid 
= b = avY/ay), the distance between two 
fluid elements grows as y - exp(bflUdtres). 
There was a similar but slower exponential 
growth in the master curves of molecular 
extension for b > 0.21 s-'. We defined a 
molecular strain rate bml from a fit of (x(x)) 
= x + b over the region where (x(x)) is 
a linear function of x (Fig. 4, inset) and 
compared bml to bflud - bc (Fig. 4). This 
analysis averages over the conformation- 
dependent dynamics shown in Fig. 2. To 
single out the most rapid stretching confor- 
mation, we also plotted b,, for the dumb- 
bell configuration at b = 0.86 s-'. 

I 
0 ~ 3 '  5 7 9 - 

Residency time (s) kt,, = 2.5 

Fig. 1. (A) The extens~on x as a funct~on of the polymer's O 5 0 15 20 
Extendon (wm) .. . 

interaction or residency time t,, in the elongational flow at 
b = 0.86 s-' for 992 molecules. Several individual traces are highlighted. We also plotted the average 
extension (~(t,,)) as open circles. Notice in particular, the large heterogeneity in the dynamics of these 
molecules. To slow down the dynamics, we used an aqueous sugar solution (T = 41 cP). We imaged 
those molecules whose center of mass started within 22 pm of the center line of the inlet channel. Within 
this region, the measured velocity gradient along the full length of the inlet (av,/ax = -&) was linear and 
within 296 of the measured velocity gradient along the outgoing axis (av,,/iy = d). Because the fluid is 
incompressible ('7.6 = 0) and it is a planar flow (av/rlz = O), the molecules experienced a constant strain 
rate independent of position. Furthermore, the calibrated strain rate measured by tracking fluorescent 
beads agreed within 2% with the strain rate calculated from the motion of the center of intensity of 
individual DNA molecules. The data starts at t,, > 0, because the onset of elongational flow x,,,, is 
960 km upstream from the stagnation point, whereas the edge of the imaging area x,,- is 86 pm 
upstream. The interaction time of the polymer with the applied velocity gradient before imaging is given 
by t = In(x,,,,Jx,,~)l& . The raw extension data was smoothed by weighted averages with its nearest 
neighbor of xi = 0.21 x,, + 0.58 x, + 0.21 x,,, .  (B) Time evolution of the probability distribution of 
molecular extension calculated from an ensemble of at least 40 individual molecules at b = 0.86 s-'. The 
secondary peak arises from molecules in a folded configuration (Fig. 2). Keuning's simulations of a 
bead-spring-bead model generated similar broadly shaped histograms (33), though such simulations 
are incapable of producing the secondary peak associated with folded configuration seen in the 
experimental data. 
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A polymer is said to "affinely" deform 
with the fluid if the molecular deformation 
equals the deformation of the surrounding 
fluid element. It has been suggested that 
when t >> 1/~,,&, affine deformation be- 
comes an increasingly valid approximation 
(29). In the simplest analysis, we note that 
(~(t,,)) did not reach xsWdy even after an 
accumulated fluid strain of E = tt,,, 5.7, 
which corresponds to an e5.7 or -300-fold 
distortion of the fluid element (Fie. 3). For . " .  
comparison, the required molecular distor- 
tion to fully extend stained A-DNA is LIR, 
= 30 where RG, the radius of gyration, is 
0.73 pm (21). 

In part, this lack of affine deformation in 
(x(t,,,)) arises from the large variation in 
t-,,. Notwithstanding this variation which 
is intrinsically nonaffine, we wanted to 
know if molecules deform affinelv once 
they start to stretch. To do so, we analyzed 
the dvnamics of the master curve because it 
suppresses the variation in to,,, by comput- 
ing (x(x)) instead of (~(t,,,)). At moderate 

strain rates, affine deformation is not ex- 
~ected,  because there must be some s l i ~  
between the polymer and the fluid to creak 
the hydrodynamic force necessary to over- 
come the native elasticity of the polymer. 
Because there is no deformation for t < t,, 
we plotted tml versus tPUid - t,, where t, = 
0.4/~,,&. At lower t ,  the molecules are 
stretching near the theoretically expected 
limit (Fig. 4). At higher t ,  the data shows a 
marked de~arture. and it is clear that the 
affine deformation approximation breaks 
down. Furthermore, when plotted as tml/ 
(tPUid - t,) versus (tPd - t,), the data is 
decreasing at 0.86 s-'. Thus, the data shows 
neither an absolute nor a fractional ap- 
proach toward affine deformation at higher 
t even after eliminating the laree variation " " 
in t-,,. This failure arises from the intro- 
duction of intramolecular constraints 
(folds) which dramatically slow down the 
averaee dvnamics. On  the other hand. the " 3 

subset of molecules in a dumbbell configu- 
ration stretched almost as fast as can be 

theoretically expected. 
Our steady-state results are approximate- 

ly characterized by a simple "dumbbell" 
model consisting of two beads connected by 
a spring based on the Marko-Siggia force 
law (Fig. 3B, solid line) (20). Previously, 
the steadv-state extension of a tethered 
polymer in a uniform flow was well de- 
scribed bv this model (1 7). and we devel- . ,, 

oped a molecular understanding of the ori- 
gin of this agreement based on simulations 
(22). An extrapolation of the model to x = 
0 gives a critical strain rate of E ~ T , , ~  = 0.4, 
which is near the theoretical value of 0.5 
calculated from the Zimm model and by the 
numerical calculation of Larson and Magda 
(3). This value of t , ~ , , ~ ~  = 0.4 is less than 
the values of 3 to 8 seen in recent birefrin- 
gence measurements of polystyrene solu- 
tions by Nguyen et al. (9). 

To see if this model could self-consistent- 
ly describe the dynamics of the master curve, 
we calculated the expected dynamics, using 
parameters determined from the steady-state 

flg. 2 mm-de- 
pendent rate of stmtd-hg: 
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results. Whereas the predicted rate of exten­
sion is close to the measured dynamics for 
the dumbbell configuration, it overestimates 
the average measured dynamics (Fig. 4, in­
set). So, although this dumbbell model de­
scribes the steady-state extension, it fails to 
describe these simplified dynamics in which 
the large variation in tonset is suppressed. 
Therefore, we expect difficulty in trying to 
predict the transient stress in the fluid by 
constitutive equations based on a simple 
dumbbell model (2). Given the nonaffine 
deformation, a term proportional to — x 
which can describe an "internal viscosity" 
might bemadded (2). Such a term is suggested 
by the measurements of r\E because it leads a 
dissipative component of the stress relax­
ation (15). Although a term proportional to 
—x can approximately compensate for the 
slower average dynamics, our data show that, 
in part, these slower dynamics arise from 
folded configurations which are meta-stable 
rather than arising from the monomer-
monomer friction typically associated with 
internal viscosity. We note that there are 
additional terms besides — x that can lead to 
dissipative stresses (30, 31). 

Given our measurements of the dynamic, 

steady-state, and ensemble-averaged proper­
ties of polymers in an elongational flow, we 
now compare our data to previous experimen­
tal and theoretical results. Atkins and Taylor 
measured the birefringence of A.-DNA in a 
similar planar elongational flow (Fig. 3B) (8). 
Our ability to select only those molecules that 
have reached steady-state extensions reveals a 
much sharper transition occurring at a lower 
KTrelax- As discussed above, the higher value 
of tcTrelax seen by birefringence occurred for 
synthetic polymers as well as for DNA (9). 
Evidently there is no direct correspondence 
between either xsteady or xhulk and the birefrin­
gence at the stagnation point. Because bire­
fringence measures orientation rather than 
extension, some disagreement would be ex­
pected based on the observed conformational 
features such as folds. However, folds would 
cause a premature saturation in birefringence 
with respect to xsteady. Our results highlight 
the difficulties in interpreting birefringence 
and other bulk measurements and suggest that 
this difficulty may be even greater for synthet­
ic polymers, for which the larger ratio of L/RG 

requires an even larger accumulated fluid 
strain than is needed to extend X-DNA. 

In contrast to previous light scattering 

4 5 
Accumulated fluid strain 

0 1 2 3 4" 
Dimensionless strain rate 

Fig. 3. (A) Fractional average extension (x)/L calculated from an ensemble of individual measurements 
as a function of the accumulated fluid strain s = stres. The deformation of the surrounding fluid element 
is given by exp(e). Averages were calculated from up to -1000 individual molecules for the five 
highest strain rates and up to -400 molecules at the lower strain rates depending on tres. Averages 
for <40 molecules were not plotted:7 For e = 0.51 s_ 1 , the stage was moved 100 ̂ m up an inlet to 
observe the earlier time evolution. Note the similarity in the slope between the two highest e implies 
the difference in magnitude of (x)/L probably arises more.from a reduction in (stonset) than from an 
increase in x for the highest e. This supposition is verified by the analysis presented in Fig. 4. (B) The 
steady-state extension xsteady (open symbols) and "bulk" averaged extension xbulk (closed symbols) 
as a function of the dimensionless strain rate sjrelax, where Trelax is the longest relaxation time (34) or, 
more precisely, the slowest measured relaxation time from an extended state (8, 26). For the five 
highest e, xsteady was fit to a dumbbell model (solid line) with a worm-like spring (20) and two 
parameters: the contour length (/_= 21.1 |xm) of the stained DNA and the effective bead radius (Rbead 

= 0.16 (Jim). This value of L for stained X-DNA is close to our previous measurement of L = 22 |xm 
(17). Because of the large fluctuations at lower e, xsteady was calculated as average over all the data 
after the molecule reached the lower bound of the fluctuations about xsteady. xbulk was determined by 
a spatio-temporal average over all measurements. The dashed line is the normalized birefringence 
data of dilute X-DNA by Atkins and Taylor (8). The dashed arrows indicate the relationship between 
(x(tres)) and xsteady for the same e. Note, (x(tres)) does not reach xsteady within stres < 5.7 even though 
some individual molecules do (see inset). The symbol shape is preserved between plots and indicates 
e. (Inset) An individual molecule stretching to a steady-state value (open circles). 

results on synthetic polymers (4,5), our data 
shows extensions significantly greater than 
~ 2 RG, though RG, by definition, is always 
less than x/2. In general, the large difference 
between RG and xsteady/2 is caused by the 
broad distribution in tres for the population of 
molecules measured by light scattering. 
Hence, x ^ / 2 , not xsteady/2, should be used 
for comparison. In addition, the highly 
asymmetric mass distribution of the most 
common conformation (half-dumbbell) 
would further reduce RG. In particular, we 
directly calculated RG from the image data 
for ETreJax = 1.2. A spatio-temporal average 
of this data yielded RG

 lk = 2.2 |xm, which is 
three times the equilibrium coil size [RG = 
0.73 |xm (21)] but is much smaller than 
steady-state extension (xsteady =14 .8 |xm) at 
this £. Thus, our results help explain the 
apparent discrepancy between light scatter­
ing and birefringence measurements. 

Our results suggest that midpoint chain 
fracture in stagnation point flows does not 
imply that all chains are extended. The 
large variability in x (Fig. 1 A) indicates that 
a number of molecules rapidly reach steady 
state. If we extrapolate our results to a £ of 
100 times higher, it is these highly extend­
ed, early-stretching molecules that will ex­
perience a force large enough to fracture at 
or near their center. Nonetheless, because 
of the limited tres, the number of such 
chains that are rapidly stretching and start 
stretching early is relatively small. Thus, 
only a fraction of the total number of chains 
fracture in agreement with the results of 
bulk experiments (8, 11), but this fracture 
of some chains does not imply that all 
chains are extended. 

Rheologists often infer molecular deforma­
tion from bulk viscoelastic measurements (2). 
Given the data in Fig. 1, the known elasticity 
of DNA (20), and classical results in rheology 
(2), one can calculate the extensional stress 
aE = n (x#F(x)) and the extensional viscosity 
% = °"E/^ w n e r e n is density of molecules and 
F(x) is the steady-state elasticity. However, 
because these molecules are in highly non-
equilibrium configurations (Fig. 2A), it is in­
accurate to use the steady-state elasticity for 
molecules at £ » lhrelax. From this and the 
lack of a physically significant mean as de­
scribed below, our results suggest difficulties 
with inferring an average conformation from 
bulk rheological measurements. Additionally, 
our results reveal problems with the use of the 
Peterlin approximation (32), in which x2(tre) 
is replaced by {x2(trJ), to derive constitutive 
equations that predict bulk rheological mea­
surements from a micromechanical or kinetic 
theory (2). The heterogeneity in our data that 
leads to the breakdown of the Peterlin ap­
proximation is also seen in Keunings' stochas­
tic simulations of the finitely extensible 
dumbbell model (33). Although this simpli-
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fied model of polymer dynamics based on 
kinetic theory yields histograms that are in 
semiquantitative agreement with our data 
(Fig. lB), simulations with the Peterlin ap- 
proximation in conjunction with kinetic the- 
ory lead to qualitatively different results. 

To  account for the excess stress measured 
by James and Saringer (12), Ryskin, Larson, 
Hinch, and King and James have developed 
theories based on different hypothesized mo- 
lecular configurations (1 6, 31 ). By direct 
observation of dumbbell, half-dumbbell, 
folded, and kinked conformations, we con- 
firm the presence of conformations similar to 
those propped. The presence of these con- 
formations provides a qualitative explana- 
tion for the dissioative comwonent of stress 
found in measurements of qE. However, no 
one of the theories describes the comolete 
range of observed conformations. Rather, 
the individual conformations assumed in 
these theories represent one of the several 
observed conformations. 

From a theoretical point of view, the 
conformation-dependent dynamics implies 
that the commonly used approach of devel- 
oping mean-field theories has an  inherent 
disadvantage (34). The probability distribu- 
tion is not a narrow distribution about a 
mean but rather a broad, oddly shaped dis- 
tribution (Fig. 1B) because of several dis- 

tinctly different dynamical processes (Fig. 
2). Further, the differences in x and t,,,,, 

imply a sensitive dependence on the poly- 
mer's initial conformation when it enters 
the velocity gradient. Presumably, these 
variations arise directly from the multitude 
of accessible conformations at equilibrium 
where thermal fluctuations cause instanta- 
neous deviations away from a spherically 
symmetric distribution. For instance, a 
polymer whose initial configuration has 
both ends on the same side of the center of 
mass and is subject to a 8 >> l / ~ ~ ~ ~ ~  would 
most likely become folded, because there is 
not enough time ( T ~ , ~ ~ )  for an  end to move 
to the other side of the molecule. Variations 
similar to those in our ex~erimental data 
have been observed in the simulations of 
Larson (31), Hinch (16), and Keunings 
(33). 

Although we observe a sudden increase 
u 

in the steady-state extension of polymers at 
a critical strain rate, our data indicates that 
the concept of a discrete and abrupt coil- 
stretch transition is limited to the steadv 
state. Polymers do not undergo a simple, 
collective and simultaneous unwinding as 
soon as 8 > 8,. The mismatch between 
(~(t,,,)) and xsCeady implies that the non- 
Newtonian properties of dilute polymer so- 
lutions in most practical elongational flows 

(where 8tre, < 5.5) are dominated by the 
dynamic and not the steady-state proper- 
ties. Our data should serve as a guide in 
developing improved microscopic theories 
for polymer dynamics and the bulk rheo- 
logical properties of such solutions. 
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crocontact printing (5) and voltametric mi-
crosensors (6), and they have recently been 
applied to molecular host-guest recognition 
(7). 

There is little information available on the 
mechanical properties of SAMs, particularly 
concerning the nature of surface stress in films 
during the formation process, because it is 
difficult to follow the structural evolution of 
monolayer self-assembly. One recent ap­
proach (8) used scanning tunneling microsco­
py to infer the growth kinetics of alkanethiol 
SAMs indirectly from snapshot images ob­
tained at various coverages. Here, we used 
micromechanical sensors to gather quantita­
tive data on surface stress changes that devel­
op during the self-assembly process of HS-
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