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Identification of a Chemokine Receptor
Encoded by Human Cytomegalovirus as a
Cofactor for HIV-1 Entry

Olivier Pleskoff, Carole Tréboute, Anne Brelot,
Nikolaus Heveker, Michel Seman, Marc Alizon*

The human cytomegalovirus encodes a 3-chemokine receptor (US28) that is distantly
related to the human chemokine receptors CCR5 and CXCR4, which also serve as
cofactors for the entry into cells of human immunodeficiency virus-type 1 (HIV-1). Like
CCR5, US28 allowed infection of CD4-positive human cell lines by primary isolates of
HIV-1 and HIV-2, as well as fusion of these cell lines with celis expressing the viral
envelope proteins. In addition, US28 mediated infection by cell line-adapted HiV-1 for

which CXCR4 was an entry cofactor.

Human immunodeficiency virus infects
cells by a process of membrane fusion that is
mediated by its envelope glycoproteins
(gp120-gp41, or Env) and is generally trig-
gered by the interaction of gp120 with two
cellular components: CD4 and a coreceptor
belonging to the chemokine receptor family
(1). The coreceptor for HIV-1 strains
adapted to replication in CD4™ cell lines
(TCLA strains) was identified by a genetic
complementation approach and named
fusin (2); however, it was later shown to be
an a- (or CXC) chemokine receptor and
designated CXCR4 (3). The isolation of fusin
and the antiviral activity of certain - (or
CC) chemokines (4) led to the demonstration
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that the B-chemokine receptor CCR5 is the
principal coreceptor for primary HIV-1 strains
(5-8). In addition to CCR5, certain primary
HIV-1 strains (dual tropic) use CXCR4 (9),
or CXCR4 and CCR2b (8), as a coreceptor,
whereas others (macrophage tropic) can use
CCR3 (7, 10). The essential role of CCRS5 is
nevertheless indicated by the resistance to
HIV-1 infection of individuals with defective
CCRS5 alleles (11). The CCR5 and CXCR4
coreceptors are also used by HIV-2 and the
related simian immunodeficiency viruses (12,
13).

Several homologs of chemokine receptors
are encoded by herpesviruses (14); in partic-
ular, by the US27, US28, and UL33 open
reading frames (ORFs) of the human cyto-
megalovirus (CMV) (15). In fibroblasts in-
fected experimentally, these ORFs were
transcribed at a high rate after viral DNA
replication (16), but their pattern of ex-
pression in vivo and their role in the life
cycle of CMV are unknown. The product
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Fig. 1. HIV coreceptorac-  p
tivity of CXCR4, CCRS,
and US28 expressed in
the human cell line
U373MG-CD4. U373MG-
CD4 cells (LTR-lacZ*)
were harvested 24 hours
after transfection and
transferred to  24-well
plates for coculture (1:1
ratio) with Hela-Env/
ADA, Hela-Env/LAl, or
HIV-2p-infected  cells
(A), or for infection with the
HIV-1 strains ADA, Jr-
CSF, LAl or NDK (same
inoculums as in Table 1),
or with HIV-25, (60 ng of
p24 per well) (B). Cells
were fixed and stained
with X-Gal 20 hours after
initiation of coculture or 40
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hours after infection. Data represent numbers of blue-stained foci per well (mean of two experiments, with

independent transfections). Error bars represent the

of the US28 ORF (here referred to as
US28) is a functional receptor for several
B-chemokines, including the CCR5 li-
gands RANTES (regulated on activation,
normal T expressed and secreted), macro-
phage inflammatory protein-la (MIP-
la), and MIP-1B (17). We therefore in-
vestigated whether US28 exhibits HIV co-
receptor activity.

The human glioma-derived cell line
U373MG-CD4 is naturally resistant to HIV-1
entry and to fusion with Env* cells and is
stably transfected with a long terminal repeat
(LTR)—lacZ construct inducible by the HIV-1
transactivator Tat (I18). Cells infected by
HIV, or syncytia formed with Tat"Env™* cells,
can therefore be detected with high specificity
by an in situ B-galactosidase assay (blue stain-
ing with the X-Gal substrate), as described
previously (12, 18). U373MG-CDA4 cells were

A HeLa-Env/LAl

Hela-P4

Hela-P4/US28
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range between mean and maximal values.

transfected with expression vectors encoding
US28, CCRS5, or CXCR4 (19) and then test-
ed for their ability to form syncytia with var-
ious Env* cells (Fig. 1A). As expected,
U373MG-CD4  cells expressing CXCR4
formed syncytia with HeLa—Env/LAI cells
(20) stably expressing Env from HIV-1 4
(TCLA), whereas U373MG-CD4 cells ex-
pressing CCR5 formed syncytia with Hela—
Env/ADA cells stably expressing Env from
the primary macrophage-tropic HIV-1,p4
(21). Both CXCR4 and CCR5 allowed the
formation of syncytia with cells chronically
infected with HIV-2; o (22). The expression
of US28 allowed fusion of U373MG-CD4
cells with each of the three types of Env*
cells. Similar results were obtained in infec-
tion assays (Fig. 1B). The macrophage-tropic
HIV-1 ADA and HIV—I]FCSF (23) infected
U3T3MG-CD4 cells expressing CCR5 or

Hela—Env/ADA B
10004 885+ 95
* k] ]
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Q -
c A
>
(]
s 1004
5 3
a -
= ]
b 4 '.- z v
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US?28, but not those expressing CXCR4. The
TCLA strains HIV-1, 4; and HIV-1 ¢ (24)
infected cells expressing CXCR4 or US28, but
not those expressing CCR5. The U373MG-
CD#4 cells were not totally resistant to infec-
tion with HIV-2;4p, but the efficiency of
infection was markedly increased by expres-
sion of either US28, CXCR4, or CCR5. In
these experiments, US28 behaved as a core-
ceptor for primary HIV-1 strains, and for
HIV-2 o, with an efficiency similar to that
of CCR5. In addition, US28 mediated infec-
tion by TCLA HIV-1 strains, although less
efficiently than CXCR4.

The coreceptor activity of US28 was
tested in another CD4™ human cell line,
HeLa-P4, also stably transfected with an
LTR-lacZ construct (25). These cells are
permissive to infection by TCLA and dual-
tropic HIV-1 and HIV-2, but not to infec-
tion by primary strains with a macrophage-
tropic or non-syncytium-inducing (NSI)
phenotype. Accordingly, they formed syn-
cytia, detectable by staining with X-Gal, on
coculture with HeLa—Env/LAI but not with
HeLa—Env/ADA cells (Fig. 2A). Fusion
with HeLa—Env/ADA was readily observed
when HeLa-P4 cells were transfected with
the US28 expression vector (Fig. 2A), al-
though a higher number of syncytia was
generally apparent on expression of CCR5
(Fig. 2B). In contrast, fusion with HeLa—
Env/ADA cells was not observed when
HeLa-P4 cells were transfected with expres-
sion vectors encoding CXCR4 (Fig. 2B) or
other chemokine receptors—in particular,
CCR1 and the Duffy antigen—or with ex-
pression vectors containing the US27 or
UL33 ORFs (26). Also, fusion with Env*
cells was not detected when the US28 or
CCRS5 vectors were transfected into CD4-
negative LTR-lacZ HeLa cells (25).

To facilitate detection of US28, CCR35,
and CXCR4 at the cell surface, we engineered

Fig. 2. HIV-1 coreceptor
activity of CCR5 and
US28 in Hela-P4 cells
(CD4* LTR-lacZ*). (A)
HelLa-P4 cells that had
been mock-transfected
(a and b) or transfected
with the US28 vector (c
and d) were cocultured
with HeLa-Env/LAl cells
(@ and ¢) or HeLa-Env/
ADA cells (b and d), and
then stained with X-Gal,
as described in Fig. 1A.
(B) Syncytia formation in
cocultures of HeLa—Env/
ADA cells and Hela-P4
cells transfected with ex-

780 =40

pression vectors encoding CCR5, US28, CXCR4, or their epitope-tagged

3 forms (T-US28, T-CCR5, and T-CXCR4). The experiment was performed as
described in Fig. 1A. Data represent numbers of blue-stained foci per well.
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their NH,-termini to express a ¢-MYC
epitope (27). Transfection of HeLa-P4 cells
with vectors encoding the epitope-tagged
forms of US28 or CCR5 allowed fusion with
HelLa-Env/ADA cells (Fig. 2B). The epitope
tag markedly reduced the activity of US28,
but had a lesser effect on the activity of CCR5
(Fig. 2B). Flow cytometry of transfected
HeLa-P4 cells (28) revealed that the surface
expression of epitope-tagged US28 was re-
duced relative to that of the tagged forms of
CCRS5 or CXCR4 (Fig. 3). Differences in the
surface expression of epitope-tagged chemo-
kine receptors have been observed previously
(7). Thus, modification of the NH,-terminal
domain of US28 may reduce HIV coreceptor
activity or have an indirect effect on its trans-
port to or stability at the cell surface.
HeLa-P4 cells were stably transfected
with the CCR5 or US28 vectors (29), and
clones were selected for their ability to form
syncytia with HeLa-Env/ADA cells (Fig.
4A). Unlike the parental cells, HeLa-P5
(expressing CCR5) and HeLa-P6 (express-
ing US28) cells could be infected by HIV-
1apas HIV-1; op, and two primary NSI
strains (VEN and BXO01), as detected by
staining cells with X-Gal (Table 1) or, in
the case of HIV-1,4, by polymerase chain
reaction (PCR) amplification of the viral
DNA. The infection of HeLa-P5 cells was
more efficient for all strains tested. Howev-
er, Northern (RNA) blot analysis suggested

Fig. 3. Detection of A
epitope-tagged chemo-
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Fig. 4. Stable expression of CCR5 and
US28 in Hela-P4 cells. (A) Formation of
syncytia in cocultures of HeLa—Env/ADA
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cells with either HelLa-P4 cells or cell lines derived by stable transfection of HelLa-P4 cells with CCR5
(HelLa-P5) or US28 (Hela-P6) expression vectors. Cocultures (1: 1) were stained with X-Gal after 20 hours.

Data represent numbers of blue-stained syncytia (mean of two wells).

(B) Detection of CXCR4, CCR5,

US28, and B-actin (control) mRNA by Northern blot hybridization of total RNA (10 pg per lane) from
Hela-P4, HelL.a-P5, and Hel.a-P6 cells, as indicated. The sizes of the transcripts are indicated in kilobases.

that CCR5 is expressed at a higher level in
this cell line relative to US28 in HeLa-P6
cells (Fig. 4B). The infection of HeLa-P5
and HeLa-P6 cells with HIV-1, ,; was less
efficient compared with infection of HeLa-
P4 cells (Table 1); this difference was ap-
parently not due to a lower abundance of
CXCR4 mRNA in the former cell types
(Fig. 4B).

Deng et al. (5) did not detect infection
with primary HIV-1 strains in a population
of CD4* Hela cells transduced with a
US28 retroviral vector. The extent of US28

Control

expression in these cells was probably low-
er than that in the HeLa-P6 clone or in
transiently transfected cells. Our experi-
ments with epitope-tagged chemokine re-
ceptors suggest that the surface expression
of US28 is less efficient than that of
CCR5. A threshold level of expression
necessary to detect HIV coreceptor activ-
ity might therefore be more difficult to
achieve for US28. Such an explanation
also might underlie the apparent lack of
HIV coreceptor activity of US28 when
expressed with the vaccinia virus—T7

CCR5 us2s

kine receptors by flow cy-
tometry. Hela-P4 cells
were cotransfected with
the EGFP-N1 vector en-
coding the green fluores-
cent protein (GFP) and ei-
ther an expression vector
encoding epitope-tagged
CXCR4, CCRS5, or US28

GFP fluorescence
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Table 1. HIV-1 infection of HelLa-P4 (CD4* LTR-lacZ) and derived cell lines stably transfected with
CCRS5 (HelLa-P5) or US28 (Hela-P8) expression vectors. Data represent number of blue-stained cells
per well (24-well plates after incubation with X-Gal 40 hours after infection).

Inoculum Cell lines
HIV-1 strain Phenotype

(ng of p24) Hela-P4 HeLa-P5 HeLa-P5
LAl TCLA 5 2700 520 870
VEN Primary NSI 27 2 145 57
BXO1 Primary NS 5 3 280 95
Jr-CSF Primary MT* 1807 2 135 48
ADA Primary MT 50F 2 275 75

*MT, macrophage tropic.

TThe p24 concentration-to-infectivity ratio was lower for these strains, produced by

transfection of cloned proviruses into Hela cells, than for VEN and BX01, which were produced from acutely infected

lymphocytes.

RNA polymerase (vT7pol) system (2);
CCR5 and CXCR4 were functional in
parallel assays (30). The inhibition of pro-
tein synthesis by vaccinia virus infection
may affect the transport of US28 or its
turnover at the cell surface. Alternatively,
it may block the expression of a cellular
component required for the coreceptor ac-
tivity of US28.

Infection by CMV is frequent among
HIV-infected individuals and has been pro-
posed to play a role in HIV pathogenesis
(31), although this view is not supported by
all epidemiological studies (32). The princi-
pal HIV-1 target cells, CD4" lymphocytes
and monocytes-macrophages, support the
replication of CMV in vivo (33). The abun-
dance of CCR5 mRNA in these cells (5, 34)
appears markedly lower than that of US28
mRNA in fibroblasts infected with CMV
(16). If US28 is expressed at a similar level
in CD4" cells, CMV infection might there-
fore facilitate subsequent HIV-1 infection,
explaining the frequent histological detec-
tion of dually infected cells in the brain,
lung, or retina (35). In fibroblasts infected
experimentally with CMV, US28 was appar-
ently expressed as a late CMV gene (16). If
the same pattern of expression occurs in
vivo, CMV-infected cells should only ex-
press US28 transiently, before they are de-
stroyed by cytopathic effects or by the im-
mune system. However, some cells may sur-
vive for a sufficient period to support an HIV
replication cycle. Also, US28 has been pro-
posed to be associated with the CMV enve-
lope and to be transferred to the membrane
of target cells during virus entry (16). In this
instance, cells could bear US28 at their sur-
face before, or even in the absence of, CMV
replication.

Several studies have demonstrated up-
regulation of HIV-1 replication by CMV
infection in CD4* cell lines (36), macro-
phages (37), and syncytiotrophoblast cells
(38). Various interpretations of these obser-
vations have been proposed, but possible
effects on HIV-1 entry were not directly
tested. However, CMV had no effect or
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down-regulated HIV-1 replication when
cell lines were infected with phenotypically
mixed HIV-1 particles via a CD4-indepen-
dent pathway (39).

The coreceptor activity of CXCR4,
CCR5, and US28 was observed for genet-
ically divergent HIV-1 strains and for
HIV-2, suggesting that these molecules
interact with a conserved domain or con-
formational motif of gp120. The extracel-
lular domains of these chemokine recep-
tors, which are likely to mediate this in-
teraction, differ from each other in prima-
ry structure. In contrast, receptors highly
related to CCRS5, such as CCR2a, do not
mediate HIV-1 entry (5-8). The extracel-
lular domain of US28 might coincidental-
ly possess a conformation similar to that of
CCR5 (and CXCR4), allowing interac-
tion with gpl20. It is possible that other
chemokine receptors also interact with
gp120 but lack a property required for HIV
coreceptor function, such as the ability to
colocalize with CD4. In addition to its
possible role in the interactions of CMV
and HIV, the US28 chemokine receptor
may prove a useful tool with which to
address the mechanism of action of HIV
coreceptors.
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Activation of the G Protein Gq/ 11 Through
Tyrosine Phosphorylation of the a Subunit

Hisashi Umemori, Takafumi Inoue, Shoen Kume,
Naohiro Sekiyama, Motoshi Nagao, Hiroshi [toh,
Shigetada Nakanishi, Katsuhiko Mikoshiba, Tadashi Yamamoto

Various receptors coupled to the heterotrimeric guanine nucleotide-binding protein
Gg/11 stimulate formation of inositol-1,4,5-trisphosphate (IP,). Activation of these re-
ceptors also induces protein tyrosine phosphorylation. Formation of IP, in response to
stimulated receptors that couple to Gg/11 was blocked by protein tyrosine kinase
inhibitors. These inhibitors appeared to act before activation of Gg/11. Moreover, stim-
ulation of receptors coupled to Gg/11 induced phosphorylation on a tyrosine residue
(Tyr3%®) of the G141 SUbunit, and this tyrosine phosphorylation event was essential for

Gag/11 activation. Tyrosine phosphorylation of Ga

o141 Induced changes in its interaction

with receptors. Therefore, tyrosine phosphorylation of Ga,,,, appears to regulate the

activation of Ga/11 protein.

Ir 5 is a second messenger that controls
many cellular processes by causing release of
Ca?* from intracellular stores. Formation of
IP; is stimulated by heterotrimeric guanine
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nucleotide-binding protein (G protein)—
coupled receptors (GPCRs) and by recep-
tors linked by tyrosine kinases either direct-
ly or indirectly. The tormation of 1P, acti-
vated by GPCRs is catalyzed by phos-
pholipase CB (PLCRB) (1). G proteins are
composed of three polypeptides denoted «,
B, and y. The « subunits, which bind and
hydrolyze guanosine triphosphate (GTP)
(2, 3), are divided into four classes: Ga,,
Ga,, Gay, and Ga12. The Ga subunits that
regulate PLCB belong to the Gq class (Gey,,
Gall, Gal4, Gal5/16) (4). When an ag-
onist binds to a GPCR, the receptor-linked

G protein dissociates into a Ga subunit and
a GRvy dimer, each of which can activate
target effectors. However, the precise in
vivo mechanisms of receptor-mediated G
protein activation remain to be elucidated
(2, 3). Several Gq or G11 (Gg/11)—coupled
receptors induce tyrosine phosphorylation
of cellular proteins (5). Here, we examined
the role of tyrosine phosphorylation events
in IP,-Ca’* signaling through Gg/11-cou-
pled receptors.

The metabotropic glutamate receptor la
(mGluR1la) is a Gg/ll-coupled recep-
tor (6). Application of glutamate to Chi-
nese hamster ovary (CHO) cells expressing
mGluRla (7) increased tyrosine phospho-
rylation of cellular proteins within 1 min
(Fig. 1A) (8). The tyrosine phosphorylation
event was almost completely suppressed by
genistein, a protein tyrosine kinase (PTK)
inhibitor (9, 10), and was enhanced by
vanadate-H,0,, a protein tyrosine phos-
phatase (PTP) inhibitor (10) (Fig. 1B). The
mGluR1a itself was immunoprecipitated
with antibody to phosphotyrosine (anti-PY)
only from cells treated with glutamate (Fig.
1C).

We examined the possible role of PTKs
in Ca?* mobilization (11). Addition of
glutamate (100 pM) to the mGluRla-
expressing CHO cells increased the intra-
cellular concentration of Ca** ([Ca?*],).
However, when cells were incubated in
the presence of genistein, no increase in
[Ca?"], was observed [median inhibitory
concentration (ICs,) =~ 10 uM], even in
cells treated with a high concentration of
glutamate (1 mM; Fig. 2A). After
genistein was washed out, the Ca®* re-
sponse was recovered. To demonstrate
that the inhibition of Ca®* release by PTK
inhibitors is not a cell type—specific event,
we recorded Ca’?*-activated CI™ currents
in Xenopus oocytes injected with
mGluRla mRNA (12). Current elicited
by glutamate was blocked by any of three
PTK inhibitors: genistein, tyrphostin
AG213 (9), and AG60 (13) (Fig. 2B).
The currents were restored after the drugs
were removed. Thus, the stimulation-in-
duced increase in [Caz”’]i in these cells
apparently requires PTK activity.

To determine whether the PTK inhib-
itors act before or after IP, formation, we
examined the formation of IP; (14) in the
presence or absence of PTK inhibitors.
Genistein and tyrphostin AG213 almost
completely abolished glutamate-stimulat-
ed [P, formation in mGluRla-expressing
CHO cells (Fig. 2C). The effect of genis-
tein was concentration-dependent (1Cs,
~ 10 pM) (15). Daidzein, an analog of
genistein that lacks PTK inhibitory activ-
ity (10), had no effect on IP; formation. A
protein kinase C (PKC) inhibitor, H7,
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