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The plant growth regulator abscisic acid (ABA) is formed by the oxidative cleavage of an 
epoxy-carotenoid. The synthesis of other apocarotenoids, such as vitamin A in animals, 
may occur by a similar mechanism. In ABA biosynthesis, oxidative cleavage is the first 
committed reaction and is believed to be the key regulatory step. A new ABA-deficient 
mutant of maize has been identified and thecorresponding gene, Vp14, has been cloned. 
The recombinant VP14 protein catalyzes the cleavage of 9-cis-epoxy-carotenoids to 
form C,, apo-aldehydes and xanthoxin, a precursor of ABA in higher plants. 

Apocarotenoids, which are compounds de- 
rived from the oxidative cleavage of caro- 
tenoids, are widely distributed in nature and 
have important metabolic and hormonal 
functions in diverse organisms. In Mucora- 
ceous fungi, trisporic acid is a mediator of 
sexual processes (1). Retinal serves as a 
photosensory pigment in animals (2), green 
algae ( 3 ) ,  and Halobacterium (4). Retinoids, 
which are vitamin A derivatives, are mor- 
ohonens in animals 15) and have imoortant 

P-oxidation, to form one molecule of reti- 
noic acid (9).  

Abscisic acid (ABA) is a plant growth 
regulator involved in the induction of seed 
dormancy and in adaptation to various 
stresses, such as drought (10). Elevated lev- 
els of ABA induced by stress are, in part, 
responsible for stomata1 closure, changes in 
gene expression, and other plant adapta- 
tions to stress. 

Since the elucidation of the structure of 

, - 
found in the ~nolecule ( 12). Oxygen derived 
from the hydroxyl and epoxide of neoxan- 
thin or violaxanthin could account for the 
observed 1 8 0  labeling pattern. In addition, 
when etiolated bean seedlines were stressed. - 
there was a decrease in the level of these 
xanthophylls and a corresponding increase 
In ABA and its catabolites 11 3 ) .  

\ ,  

Direct evidence for a cleavage enzyme 
in ABA biosvnthesis is lackine because of 
the apparent' low abundance i n d  lability 
of the enzyme. However, several features 
of the cleavage reaction have been in- 
ferred by analysis of the later steps in ABA 
biosynthesis (Fig. 1) .  The initial CI j  
cleavage product xanthoxin is rapidly con- 
verted to ABA in vivo and in vitro (14). 
In cell-free extracts, tmns-xanthoxin is 
converted to trans-ABA, which indicates 
that there is no cis/trans isomerization 
after cleavage (14). Thus, the xanthophyll 
precursor must have a 9-cis configuration 
to produce cis-xanthoxin and subseiluently 
ABA, which is biologically active only in 
the cis form. 

L u , , 

clinical applications. ABA, its biospthetic derivation from caro- ABA biosynthetic mutants have been 
Apocarotenoids may be formed by ran- tenoids has been proposed (11). Labeling identified in a variety of plant species 

dom cleavage caused by photooxidation or 
lipoxygenase co-oxidation. However, reg- 
ulation of the synthesis of biologically ac- 
tive apocarotenoids requires a more pre- 
cise mechanism for their synthesis. Ensy- HO HO 

matic cleavage of carotenoids at a specific 
position of the polyene chain has been 
proposed as a method for the synthesis of 
several apocarotenoids. The most defini- 
tive illustration of enzymatic cleavage is 
the production of @-cyclocitral (CIJ from 
p-carotene by the cyanobacterium ,Micro- 
cystis (6). In other organisms, however, 
enzymatic cleavage of carotenoids has 
been difficult to demonstrate in vitro. For 
this reason, the cleavage reaction in vita- 
min A biosynthesis remains controversial. 
Cleavage of p-carotene by a l5,li '-dioxv- 
genase to produce two molecules of retinal 
has been reported (7,  8).  However, there 
is also evidence for asymmetric cleavage of 
@-carotene. After asymmetric cleavage, 
additional carbons are removed from the 
larger product, by a mechanism similar to 
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(15). To  date, no mutants impaired in the 
cleavage reaction have been identified. A 
new ABA-deficient viviparous mutant in 
maize. vb14. has been isolated and the cor- 
responding gene has been cloned (1 6). This 
mutant is not impaired in carotenoid bio- 
synthesis or in the conversion of xanthoxin 
to ABA. The derived amino acid sequence 
of VP14 shows significant sequence similar- 
ity to lignostilbene dioxygenases (LSDs) 
from Pseudomonas paucimobilis ( 1 7). These 
LSDs catalyze a reaction similar to the pro- 
posed cleavage reaction in ABA biosynthe- 
sis. Specifically, a double bond is oxidative- 
ly cleaved, yielding two products with alde- 
hyde groups at the site of cleavage. 

Using 9-cis-violaxanthin as a substrate, 
the recombinant VP14 protein was tested 
for cleavage activity (1 8) and the products 

Fig. 2. HPLC chromatogram (37) of the cleavage 
reaction products with the use of 9-cis-violaxan- 
thin as a substrate (32). Absorbance was mea- 
sured at 280 nm and 436 nm with a photodiode 
array detector. 

Fig. 3. Decrease in 9-cis-violaxanthin and the 
concomitant increase in xanthoxin and the C,, 
epoxy apo-aldehyde as a function of the VP14 
protein concentration. Assays were incubated for 
10 min at 22' to 24OC, extracted, and quantified 
(37). 

Fig. 4. Thin-layer chro- 
matography of assays 
with (+) and without (-) 
VP14 protein. Assays 
contained approximately 
5 kg of the indicated 
substrate (32): the all- 
trans isomers (at) and 
the 9-cis isomers (94 of 
zeaxanthin (Z), violaxan- 

+ ad. -4 ScN Xan. 

thin (V),  neoxanthin (N), and standard xanthoxin (Std. Xan). Substrate and products were separated on 
a silica gel 60 plate (EM Separations) developed with 10% iso-propanol in hexane. The plates were 
sprayed with 2,4-dinitro-phenylhydrazine to detect xanthoxin and other aldehydes. The C,, products 
are indicated by a dagger and the C,, products are indicated by an asterisk. The unlabeled spots are the 
carotenoid precursors. 

were analyzed by high-performance liquid 
chromatography (HPLC) (Fig. 2). The ex- 
pected cleavage products, xanthoxin and 
the C25 epoxy apo-aldehyde, were identi- 
fied by their ultraviolet/visible absorption 
spectra and mass spectra (1 9). 

Molecular oxygen, ferrous iron, and a 
detergent were necessary for the cleavage 
activity (Table 1). A number of organic 
cofactors were initially added to the assays 
but none had any effect on the activity 
(20). The cleavage reaction was totally in- 
hibited by EDTA, a chelator of divalent 
cations (21). The removal of EDTA and 
addition of ferrous iron were sufficient to 
restore activity. Ascorbate was added to the 
assays to maintain iron in the proper redox 
state (21). 

With increasing VP14 concentration, 
there was a decrease in 9-cis-violaxanthin 
and an equimolar increase in xanthoxin 
and the CZ5 epoxy apo-aldehyde (Fig. 3). 
Whereas photo- or chemical oxidation 
would result in random cleavage, this stoi- 
chiometric conversion of 9-cis-violaxanthin 
to the two products illustrates the specific- 
ity of cleavage between the 11 and 12 po- 
sitions of the polyene chain. 

To determine the substrate specificity of 
the cleavage reaction, the all-trans and the 
9-cis isomers of neoxanthin and violaxan- 
thin were tested. The reaction products 
were se~arated on thin-laver chromatoera- - 
phy plates and sprayed with 2,4-dinitrophe- 
nyl hydrazine to detect aldehydes (Fig. 4). 
Xanthoxin and the predicted CZ5 products 

Table 1. The requirements for cleavage activity in 
vitro. This is the standard reaction (18) minus the 
indicated cofactors and 6 kg of VP14 protein. 

Triton Cata- FeSO, O, Xanthoxin 
X-100 lase (ng)* 

were present only in reactions containing 
the 9-cis isomers. The 9-cis isomer of zea- 
xanthin, formed by iodine isomerization of 
the all-trans zeaxanthin (22), was cleaved at 
the 11-12 position by the VP14 protein 
(23) (Fig. 4). Therefore, it appears that the 
9-cis configuration was the primary deter- 
minant of cleavage specificity for the in 
vitro assays. Cleavage of 9-cis-epoxy-carote- 
noids results in the production of cis-xan- 
thoxin, which will subsequently be convert- 
ed to the biologically active isomer of ABA 
in vivo. 

The LSDs from Pseudomonas (1 7) and 
VP14 compose a novel class of dioxygen- 
ases that catalyze similar double-bond 
cleavage reactions. The conserved se- 
auences have also been identified in sev- 
eral plant expressed sequence tags, two 
open reading frames in the genomic se- 
quence of Synechocystis (24), and a protein 
expressed in the retinal pigment epithelium 
of mammals, RPE65 (25). The function of 
these gene products has not yet been deter- 
mined, but their existence indicates the pres- 
ence of this class of enzymes in a diverse 
range of species. 

The environment of the carotenoids in 
the thylakoid and envelope membranes 
(26) is very different from in vitro assays 
in which the carotenoid substrates are sol- 
ubilized by detergent. However, the char- 
acteristics of the cleavage reaction in sub- 
strate specificity and position of cleavage 
are consistent with the proposed pathway 
(27). Current evidence suggests that this 
cleavage reaction is the key regulatory step 
in ABA biosynthesis (27). Further charac- 
terization of the cleavage reaction and its 
regulation may allow the manipulation of 
ABA levels in ~ l a n t s ,  which would affect 
such processes as seed dormancy, drought 
tolerance, and cold hardening. 

+ + + + 865210 
- + + + n.d. 
+ - + + 759 + 32 
+ + - + 243214 
+ + + - n.d. 

^Nanograms of xanthoxin ? SE; n = 2; n.d., not 
detectable. 
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Identification of a Chemokine Receptor 
Encoded by Human Cytomegalovirus as a 

Cofactor for HIV-1 Entry 
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The human cytomegalovirus encodes a p-chemokine receptor (US28) that is distantly 
related to the human chemokine receptors CCR5 and CXCR4, which also serve as 
cofactors for the entry into cells of human immunodeficiency virus-type 1 (HIV-I). Like 
CCR5, US28 allowed infection of CD4-positive human cell lines by primary isolates of 
HIV-1 and HIV-2, as well as fusion of these cell lines with cells expressing the viral 
envelope proteins. In addition, US28 mediated infection by cell line-adapted HIV-1 for 
which CXCR4 was an entry cofactor. 

H u m a n  immunodeficiency virus infects 
cells bv a nrocess of membrane fusion that is , L 

mediated by its envelope glycoproteins 
(gp120-gp41, or Env) and is generally trig- 
gered by the interaction of gp120 with two 
cellular components: CD4 and a coreceptor 
belonging to the chemokine receptor family 
( I ) .  The  coreceptor for HIV-1 strains 
adapted to replication in CD4- cell lines 
(TCLA strains) was identified by a genetic 
comolementation a ~ o r o a c h  and named 

A 

fusin (2) ;  however, it was later shown to be 
an a- (or CXC) chemokine receptor and 
desienated CXCR4 13). The isolation of fusin - ~, 

and the antiviral activity of certain p- (or 
C C )  chemokines (4) led to the demonstration 

0 Pleskoff, C Treboute. A. Brelot. N. Heveker, M. Alzon, 

that the P-chemokine receptor CCR5 is the 
principal coreceptor for primary HIV-1 strains 
(5-8). In addition to CCR5, certain primary 
HIV-1 strains (dual tropic) use CXCR4 (9), 
or CXCR4 and CCR2b (8), as a coreceptor, 
whereas others (macrophage tropic) can use 
CCR3 (7, 10). The essential role of CCR5 is 
nevertheless indicated by the resistance to 
HIV-1 infection of individuals with defective 
CCR5 alleles (1 1 ). The CCR5 and CXCR4 
coreceptors are also used by HIV-2 and the 
related simian immunodeficiency viruses (1 2, 
13). 

Several ho~nologs of chemokine receptors 
are encoded by herpesviruses (14); in partic- 
ular, by the US27, US28, and UL33 open 
reading frames (ORFs) of the human cyto- 
megalovirus (CMV) (15). In fibroblasts in- - 

nserm U 332, lnstltut Cochn de Genetque Moleculare, fected experimentally, these ORFs 
22 rue Mechaln, 75014 Pars. France. 
M .  Seman, Laboratore d'lmmunod~fferenc~at~on, Unver- transcribed at a high rate after DNA 
slte Paris 7, 75005 Pars, France, replication (16) ,  but their pattern of ex- 
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