
IAA24 are likely participants 111 auxin gene 
regulation through the  T G T C T C  elements. 
A single copy of ER8 was a more active 
AuxRE than other constructs that con- 
tained two copies of T G T C T C  (3, 11) and 
could represent the  perfect pallndromic 
AuxRE, similar to the  perfect pallndromic 
GRE (4) .  

As the  COOH-terminal paa-moti f  has 
n o  apparent effect o n  ARFl  binding to 
DN'4, what might be its function? W e  used 
the  COOH-terminal region of ARF1 as bait 
in a yeast two-hybrid screen (14) and isolat- 
ed two identical cDNA clones from an  Ara- 
bidopsis c D N A  expression library. T h e  trans- 
lated open reading frame ellcoded a protein 
(ARF1-Binding Protein or ARF1-BP) that 
contained a region with amino acid se- 
quence similarity to  boxes 111 and I\' of 
ARFl  (Flg. 2, A and C ) .  ARF1-BP showed 
less similarity to boxes 111 and IV in Aux/ 
I,4A and I,4'424 proteins. Thus, boxes I11 
and IV in ARFl  may facllitate interaction of 
ARF1 with ARF1-BP, and these interactions 
may contribute to  auxln respoilslveness 

Genetlc approaches to dlssect the  auxln 
slgnal transductlon p a t h w a ~  have resulted 
111 the  clonlng of AXRI, 4 L r X l ,  and hook- 
less1 genes 115). I d e n t ~ f ~ c a t ~ o n  of the  rele- " 

vant transcription factors should facllitate 
elucidation of the  ~nechanlsms involved In 
auxin-regulated gene expression. 
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Large Porous Particles for 
Pulmonary Drug Delivery 

David A. Edwards," Justin Hanes, Giovanni Caponetti, 
Jeffrey Hrkach, Abdelaziz Ben-Jebria, Mary Lou Eskew, 

Jeffrey Mintzes, Daniel Deaver, Noah Lotan, Robert Langer* 

A new type of inhalation aerosol, characterized by particles of small mass density and 
large size, permitted the highly efficient delivery of inhaled therapeutics into the systemic 
circulation. Particles with mass densities less than 0.4 gram per cubic centimeter and 
mean diameters exceeding 5 micrometers were inspired deep into the lungs and escaped 
the lungs' natural clearance mechanisms until the ~nhaled particles delivered their ther- 
apeutic payload, Inhalation of large porous insulin particles resulted in elevated systemic 
levels of insulin and suppressed systemic glucose levels for 96 hours, whereas small 
nonporous insulin particles had this effect for only 4 hours. High systemic bioavailability 
of testosterone was also achieved by inhalation delivery of porous particles with a mean 
diameter (20 micrometers) approximately 10 times that of conventional inhaled thera- 
peutic particles. 

Inhaled aerosols are effective therapeutic car- 
riers for the treatment of respiratory inflam- 
mation ( I ) ,  cyst~c flbrosis (2), and other lung 
disorders (3); they also offer potenttal for non- 
mvasive systemic delivery of peptides and pro- 
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t e n s  (4). Local and systeinlc inhalation ther- 
apies can often benefit from a controlled re- 
lease of the therapeutic agent (5), as 1s achlev- 
able with the use of biodegradable polymeric 
materials (6). Slow release from an  ~nhaled 
therapeut~c particle can prolong the residence 
of an  administered drug in the airways or aclnl 
and can dl~ninish the rate of a drug's appear- 
ance in the bloodstrea~n (7). Also, patient 
compliance Increases when dosage frequency 
1s reduced 17). , , 

The  human lungs, however, have efficient 
ineans of removing deposited particles over 
periods ranglng froin minutes to hours. In the 
upper airways, clliated epithelia contribute to 
the "mucociliasy escalator" (8), by which par- 
ticles are swept from the airways toward the 
mouth. In the deev lui~gs, an  army of alveolar 

L - 
macrophages is capable of phagocytosing par- 
ticles soon after their deposition (9).  A n  ef- 
fectlve slow-release inhalation therapy there- 
fore reyulres a means of a v o ~ d ~ n g  or suspend- 
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Fig. 1. Confocal micros- 
copy images of (A) po- 
rous PLGA and (B) po- 
rous PIAL-Lys particles. 
Fluorescein isothiocya- 
nate-dextran was en- 
capsulated in the PLGA 
particle to render the 
pore spaces of the parti- 
cle visible in the fluores- 
cent confocal image. 
The PIAL-Lys particles 
were fluorescently la- 
beled through the reac- 
tion of rhodamine iso- 
thiocyanate with lysine 
amine groups on the surfs( ce of the particles. The PLGA and PL \L-Lys particles are highly porous, as 
evidenced by the appearance of fluorescence throughout the particle structure. 

ing the lungs' natural clearance mechanisms 
until encapsulated drugs have been effectively 
delivered. 

Until now, therapeutic dry powder aero- 
sols have been made with particle mass den- 
sities (p) of -1 ? 0.5 g/cm3 and mean geo- 
metric diameters (d) of <5 pm to avoid ex- 
cessive deposition in the dry powder inhaler 
(DPI) and oropharyngeal cavity (5, 10). Here, 
we show that very light particles (p < -0.4 
dcm3) with d > 5 pm can be deposited in the 
lungs. As a consequence of their large size and 
low mass density, porous particles can aerosol- 
ize from a DPI more efficiently than smaller 
nonporous particles, resulting in higher respi- 
rable fractions of inhaled therapeutics. Also 
by virtue of their size, large particles can avoid 
phagocytic clearance from the lungs until the 
 articles have delivered their theraveutic 
dose; this attribute can be particularly useful 
for controlled-release inhalation thera~ies. 

To assess the merits of large porous parti- 
cles for pulmonary drug delivery, we encapsu- 
lated model therapeutics inside porous parti- 
cles (Fig. 1A) composed of 5050 poly(1actic 
acid-co-glycolic acid) (PLGA). Double- and 
single-emulsion solvent evaporation tech- 
niques (I I ) were used to prepare porous and 
nonporous PLGA particles, respectively. Po- 
rous and nonporous particles of similar aero- 
dynamic diameter (12), loaded with -15 
weight % model therapeutic (testosterone), 
were aerosolized into a cascade impactor sys- 
tem (13) from a Spinhaler DPI for 30 s at an 
airflow rate of 28.3 literlmin. The cascade 
impactor provides an in vitro system for esti- 
mating the respirable fraction of a dry powder; 
it consists of a closed chamber within which 
flat plates are arranged perpendicular to the 
airflow, such that particles deposit stagewise 
in a manner reflective of their aerodynamic 
diameters. After deposition on the stages of 
the impactor, particles were collected (13) 
and total particle mass was assessed stagewise; 
the respirable fraction was determined as the 
percent of total particle mass exiting the DPI, 
recovered from the terminal, "respirable" stag- 

es of the impactor. Nonporous particles [d = 
3.5 pm, p = 0.8 dcm3 (14)] exhibited a 
respirable fraction of 20.5 + 3.5%, whereas 
50 + 10% of porous particles (d = 8.5 pm, p 
= 0.1 g/cm3) were respirable, even though the 
aerodynamic diameters (12) of the two parti- 
cle types are nearly identical. The large porous 
particles' high efficiency can be attributed to 
their smaller surface-to-volume ratio. Large 
particles aggregate less than small particles, all 
other considerations being equal (15, 16); 
thus, while both have identical aerodvnamic 
diameters, the large particles tend to exit 
the DPI more generally as single particles. 
The smaller particles aggregate more, lead- 
ing to their deposition by gravity and iner- 
tia before reaching the "respirable" stages of 
the impactor. 

To assess the influence of particle compo- 
sition, we aerosolized a second type of porous 
particle (Fig. lB), composed of poly(1actic 
acid-co-lysine-graft-lysine) (PLAL-Lys) (1 1 ). 
The PLAL-Lys particles exhibit some hygro- 
scopicity, possibly a result of their lysine con- 
tent, whereas the PLGA particles do not. 
Porous PLAL-Lys aerosols (d = 8.2 pm, p < 
0.1 g/cm3) exhibited an in vitro respirable 
fraction (57 + 1.9%) similar to that of the 
porous PLGA particles (50 + lo%), which 
suggests that absolute particle mass density, 
rather than particle chemistry or hygroscopic- 
itv. is the  rime determinant of the relativelv , , 
high respirable fractions observed for the large 
porous particles. The values of 50 + 10% and 
57 ? 1.9% for porous particles exceed com- 
parable respirable fractions obtained in recent 
aerosolization studies (15) performed with 
mannitol (4 ? 0.3%) and recombinant hu- 
man granulocyte colony-stimulating factor 
(blended with mannitol) (34 ? 2%) powders 
using a Spinhaler DPI at a similar airflow rate 
(30 literlmin). 

To determine whether the relatively effi- 
cient in vitro aerosolization of large porous 
particles translates into improved respirable 
fractions in vivo, we aerosolized porous and 
nonporous particles into the airways of rats 

Lobe number 

Fig. 2. Total particle recovely in rat lungs after 
bronchoalveolar lavage. Lobe numbers corre- 
spond to (1) left lung, (2) anterior, (3) median, (4) 
posterior, and (5) postcaval. For porous PIAL-Lys 
particles, d = 6.9 ? 4.2 pm and p = 0.1 g/cm3. 
For nonporous PIA particles, d = 6.7 ? 3.2 km 
and p = 0.94 g/cm3. Means and SEs are based 
onn = 4. 

(1 7). During forced ventilation, rats were ex- 
posed to porous or nonporous particles; bron- 
choalveolar lavage was used to collect parti- 
cles deposited in the trachea as well as in the 
airways and acini (18). The nonporous parti- 
cles deposited primarily in the trachea (-79% 
of all particle mass that entered the trachea), 
whereas only 46% of the porous particle mass 
deposited in the trachea. Particles remaining 
in the rat lungs after bronchoalveolar lavage 
were obtained by careful dissection of the 
individual lobes of the lungs in subsequent 
experiments (19) (Fig. 2). The absolute num- 
ber of porous particles remaining in the lungs 
was approximately an order of magnitude 
greater than the corresponding number of 
nonporous particles. 

The role of low mass densitv in rendering 
large particles respirable can be understood in 
terms of the particles' mean aerodynamic di- 
ameter (12). Relatively large particles with 
high porosity have the same aerodynamic di- 
ameter as smaller, nonporous particles; these 
larger particles can enter the lungs because 
particle mass dictates the location of aerosol 
deposition in the lungs. The increased aero- 
solization efficiency of large, light particles 
lowers the probability of deposition losses be- 
fore particle entry into the airways, thereby 
increasing the systemic bioavailability of an 
inhaled drug. 

To test whether large particle size can 
increase systemic bioavailability, we encapsu- 
lated insulin into porous and nonporous poly- 
meric particles. We designed the mass densi- 
ties and mean diameters of the two particles 
such that they each had an aerodynamic di- 
ameter (-2 pm) suitable for deep lung dep- 
osition (1 2); the mean diameters of the porous 
and nonporous particles were >5 pm and <5 
pm, respectively (Fig. 3, A to C). Identical 
masses of the porous or nonporous particles 
were administered to rats as an inhalation 
aerosol or injected subcutaneously (controls) 
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(2L1). Serum insulm concentratio~ls n.ere 
monitored as a fu~lction of t m e  after inhala- 
tlon or in!ect~on For both porous (Fig. 3A)  
and nonporous (Fig. 3B) particles, blood lev- 
els of insul~n reached high values xvithln the u 

first hour after inhalation. Only \vitll large 
porous particles did blood levels of insulin 
senlaill elevated (P < 0.25) beyond 4 hours, 
u l th  a relative1~- consrant msul~n release con- 
tinuing to at least 96 hours (0.04 < P < 0.2). 
These results mere confirmed b\- serum glu- 
cose values (Fig. 3C), n-hich show fall~tlg glu- 
cose levels for the first 10 hours after inhala- 
tion of the porous ~nsulin particles, followed 
bv relatively constant low olucose levels for 
tlie rernamder of the 96-hou; period [for slllall 
nonporous msulin particles, initially sup- 
pressed glucose values rose after 24 hours 
(21 )]. Slmllar hiphasic release profiles of mac- 
romolecules frorll PLGA polymers have been 

reported (22). For the large porous particles, 
msulin bioavailab~lity re1atn.e to sul>cutane- 
ous injection (23) n-as 87.596, ~vhereas the 
small nonporous particles yielded a relati1.e 
b~oavailabilitv of 12'6 after inhalation. BI- 
comparison, bioavailabllity (relative to suhcu- 
taneous ~niection) of insulin admin~stered to 
rats as an  i~lhalation liquid aerosol has been 
reported as 37.3% using a sinlllar endotrache- 
a1 method 124). The  absolute b~oavailabilitv 
of insulin inhaled into rat lungs ln the fornl of 
a lactose-lnsulln noxirder throuoh a DPI con- 

L 

tlectecl to an endotracheal tube has been re- 
ported as 6.5% (25). The  longest sustained 
insulin release previously reported (6 hours) 
15-as achieved using hposomes intratracheally 
instilled ~ n t o  rat lungs 126). " .  

Glven the short si-stemic half-life of msu- 
1111 (1  1 ~ni l l )  (27) and the 12- to 24-hour tlme 
scale of particle clearance from the central 
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4 Fig, 3, System~c concentrai~ons In rats after ad 
mnstraton o7 porous and nonporous therapeutc 
parices (Al Serum n s u n  conceniraton aier In- 
halat~on and subcutaneous njectlon oT 9 mg of 
large porous n s u n  parices No n s u n  parices 

I were admnstered to nontreated controls Porous 

4,30 _ -- parices contaned n s u n  (20 0 weght C ~ l  and 
a- O . 1  

- u 8 4 50 50 PLGA (80 0 we~ght C ~ )  (1 7 1  The1 mean d 
and d,,, values edere 6 8 p.m and 2 15 (J m, re- 

01 Time (hours) 80 loo s~ect~vely Means and SEs are based on = 3 
(8) Serum n s u n  concentration after nhalat~on 

and subcutaneous nject~on of 9 mg oT small nonporous n s u n  pari~cles No n s u n  pari~cles \were 
admnstered to nontreated controls Nonporous paricles contaned n s u n  (1 0 0 weght and 50 50 
PLGA (90 0 lweght O O I  (1 7 )  Ther !mean d and d,,,vaues were 4 4 (J m and 2 15 p.m respectvev Means 
and SEs are based on 17 = 3 (C, Serum glucose concentraton after nhaaton o7 9 mg of large porous 
n s u n  parices or 9 mg o7 small nonporous n s u n  parices No n s u n  parices were admnstered to 
nontreated controls Means and SEs are based on n = 3 (D) Serum testosterone concentraton after 
admnstraton o7 6 mg o7 porous testosterone parices (d = 20 a p.m, as an nhaaton polwder and as 
a subcutaneous control Parices contaned testosterone (1 5 weght C ~ ,  50 50 PLGA (76 5 weght C ~ )  

and PLAL-Lys (8 5 welght C ~ )  For the dry polwder p = 0 1 g1cm5 ( E l  Same as (D) but w~th smaller 
porous testosterone pari~cles (d = 10 1 p.m) 

and upper alrways (j), th, ~ippearance of ex- 
o,aenous ~nsulin in the l~loodstrea~il several 
days after ~nhalatlon appears to indicate that 
large porous particles achieve long, non- 
phagocytosed lifetimes in the deep lungs. T o  
test this hypothesis, we lavaged (i8) the lungs 
of rats inlmecliately aiter itlhalation of the 
porous and nonporous insulin particles as well 
as 48 hours after ~nhalation. For nonporous 
particles, 30 t 3'6 of phagocytic cells con- 
tained particles inlmediately after inhalation, 
and 39 1 546 contained particles 48 hours 
after mhalation. By contrast, only 8 t 2'6 of 
phagocyt~c cells contained large porous parti- 
cles immediatelv after mhalat~on, and 12.5 i 
3.5% contained'partrcles 48 110~ll.s after ~ n h a -  
lation. For small nonporous part~cles, 17.5 t 
1.5% of the phagocytlc cell population con- 
tamed three or nlore particles 48 hours after 
~nha la t~on ,  compared nrith 4 5 1% for large 
nonporous partlcles. Inflammatory response 
n-as also elevated with snlall nonporous partl- 
cles; neutrophils represented 34 2 12% of the 
phagocytlc cell population 4.8 hours after ill- 
halation of the small nonporous particles, 
compared with 8.5 i 3.5% for large porous 
particles (alveolar macrophages represented 
10046 of cells measured immediately after in- 
halation). These results are consistent with 
those of 111 vitro experiments showing that 
phagocytosls of particles di~ninlshes precipi- 
tously as particle diameter increases beyond 3 
pm (28). 

To further deternline nliether increased 
bioavailab~lity correlates with increasing size 
of porous particles, we encapsulated a second 
model drug, testosterone, in porous partlcles 
of two d~fferent lllean geometric diameters 
110.1 and 20.4 um) .  An identical mass of 
powder was administered to rats as an inhala- 
tion aerosol or as a s ~ ~ b c u t a n e o ~ ~ s  injection 
(controls). Ser~un testosterone concentrations 
were ~llonitored as a f ~ ~ n c t ~ o n  of time after 
inhalat~on or ~njectton (Fig. 3, D a n ~ l  E). 
Blood levels of testosterone renlaitled well 
abol-e background levels (P < 0.05) for 12 to 
24 hours, even though the systemic half-life of 
testosterone is 10 to 20 nlin (27).  Testoster- 
one bioal-ailability relative co subcutaneous 
injection was 177'7'0 for the 20.4-ym-diameter 
particles (Fig. 3D) and 53?h for the 10.1-pm- 
diameter particles (Fig. 3E). The  increase In 
testosterone bioavailability with ~ncreasing 
size of porous particles is especially notable 
given that the mean diameter of the 20.4-pm 
particles is - 10 times that of nonporous cotl- 
~ e n t i o n a l  therapeutic particles (5, 10). The  
relati\-ely short time scale of testosterone re- 
lease observed for both the inhalation and 
subcutaneous controls is near the in vitro time 
scale of release (several hours) reported else- 
where for 50:50 PLGA lnicroparticles of sim- 
ilar size encapsulating a therapeutic substance 
(bupi\-acaine) of similar molecular weight and 
lipophilicity (29). 
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EES333 
Porous particles comprising therapeutics 

and pharmaceutical excipients can easily be 
formed by spray-drying (30), rapid expansion 
of supercritical fluids (31), and other particle 
formation technologies. Hence, they can im­
mediately address a variety of needs as ther­
apeutic carriers for inhalation therapies. 
Their potential for high aerosolization effi­
ciency, long-term drug release, and increased 
systemic bioavailability makes large porous 
particles especially attractive for systemic in­
halation therapies. 
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