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Transformation of Chicken Cells by the Gene
Encoding the Catalytic Subunit of Pl 3-Kinase
Hwai Wen Chang, Masahiro Aoki, David Fruman, Kurt R. Auger,

Alfonso Bellacosa, Philip N. Tsichlis, Lewis C. Cantley,
Thomas M. Roberts, Peter K. Vogt*

The avian sarcoma virus 16 (ASV 16) is a retrovirus that induces hemangiosarcomas in
chickens. Analysis of the ASV 16 genome revealed that it encodes an oncogene that is
derived from the cellular gene for the catalytic subunit of phosphoinositide 3-kinase (Pl
3-kinase). The gene is referred to as v-p3k, and like its cellular counterpart c-p3k, it is
a potent transforming gene in cultured chicken embryo fibroblasts (CEFs). The products
of the viral and cellular p3k genes have Pl 3-kinase activity. CEFs transformed with either
gene showed elevated levels of phosphatidylinositol 3,4-bisphosphate and phosphati-
dylinositol 3,4,5-trisphosphate and activation of Akt kinase.

Retroviruses found in spontaneous animal
tumors can be sources of oncogenes that
reveal important aspects of cellular growth
control (1). The avian sarcoma virus 16 has
recently been isolated from a spontaneous
chicken tumor. It induces hemangiosarco-
mas in chickens and transforms CEFs in cell
culture (2). To characterize the oncogene of
ASV 16, the viral genome was cloned from
a MZAP c¢DNA library of ASV 16-trans-
formed CEFs (3). The nucleotide sequence
of the ASV 16 clone showed a nonviral
insertion marking a possible oncogene of
cellular origin. The 5’-terminus of the non-
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viral sequence was fused to viral gag, and
the 3’-recombination junction was located
within the viral env gene. A computer-
assisted comparison revealed that the puta-
tive oncogene was homologous to the gene
encoding the catalytic subunit, pl110, of
bovine PI 3-kinase (4). It was therefore
named v-p3k (Fig. 1).

A clone of ASV 16 minus the 3’ env
sequence was introduced into the avian ret-
roviral expression vector RCAS (5), and
the construct (RCAS-v-P3k) was trans-
fected into CEFs, which resulted in the
production of infectious retroviral progeny.
After passage, the cultures became com-
pletely transformed and released a focus-
forming RCAS retrovirus (Fig. 2, A and B).

The RCAS-v-P3k—transformed CEFs
were tested for the presence of the Gag-v-
P3k fusion protein by immunoprecipitation.
A monoclonal antibody against avian ret-
roviral Gag p19 (6) precipitated a protein of
150 kD from CEFs transfected with RCAS-
v-P3k and from ASV 16-infected CEFs but
not from CEFs transfected with the vector
alone (Fig. 3A). The size of the protein
corresponded to the predicted size of the
Gag-v-P3k fusion. The 150-kD protein was
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also immunoprecipitated by a polyclonal
antibody against a COOH-terminal se-
quence of the bovine Pl 3-kinase pl110a
subunit (anti-p110) (7) (Fig. 3B). We per-
formed tests for tumorigenicity by injecting
1-day-old SPAFAS (Storrs, Connecticut)
chicks subcutaneously in the wing web with

RCAS-v-P3k virus stock or with 1 X 10°

c-P3k
Glus2 GIu'"® Glu469 AsnS60 800

= L

v-P3k
Ly552 Lys" 6
(14 124

)]
Gag

971 1068

69 0
Ghlf‘ lLvs-"G 800 971 0ee

Fig. 1. Schematic structure of the gene products of
c-p3k and v-p3k. The amino acid residues that are
different between the c-P3k and v-P3k proteins are
marked. The heavy line in v-P3k represents the
retroviral gag gene product. The black box marks
the domain of Pl 3-kinase that binds to the regula-
tory subunit p85, and the open box represents the
catalytic domain of Pl 3-kinase. This sequence of
ASV 16 has been deposited in the GenBank data-
base [accession numbers AFO01075 (v-p3k) and
AF001076 (c-p3K)).

A

Fig. 2. Transformation in vitro and tumor induction
in vivo by p3k. (A) CEF culture transfected with the
RCAS vector. (B) Focus of transformed CEFs in-
duced by v-p3k (22). (C) CEF focus induced by
c-p3k (22). (A) through (C) were photographed at
%25 magnification. (D) Hematoxylin-eosin—stained
histologic section of normal chicken wing web. f,
feather follicle; m, muscle. (E) Hematoxylin-eosin—
stained histologic section of p3k-induced heman-
giosarcoma; b, blood-filled space; sm, sarcoma-
tous infiltrate and muscle; |, lymphocytic infiltrate.
(D) and (E) were photographed at X250 magnifi-
cation and phase contrast.

www.sciencemag.org * SCIENCE ¢ VOL. 276 ¢ 20 JUNE 1997

CEFs transfected with RCAS-v-P3k. Both
virus and virus-producing cells induced he-
mangiosarcomas at the site of injection af-
ter a latent period of 1 to 2 weeks (Fig. 2, D
and E).

We isolated the cellular p3k gene (c-
p3k) from a chicken embryonic brain
cDNA library by using the v-p3k coding
sequence as a probe. The full-length
cDNA clone encoding c-p3k was 3452
base pairs, and it contained a 1068—amino
acid open reading frame. The in vitro—-
translated protein had a molecular mass of
110 kD and was recognized by anti-p110
(7) (Fig. 3C). The sequence differences
between the c-P3k and v-P3k proteins are
summarized in Fig. 1. When compared
with the cellular protein, the viral version
shows a 14-amino acid deletion at the
NH,-terminus and is fused to viral Gag
sequences. There are also four amino acid
substitutions in the v-P3k sequence.

To determine if c-p3k has transforming
activity, we cloned the gene in the retro-
viral expression vector RCAS and trans-
fected it into CEFs. The RCAS-c-P3k
construct produced foci of transformed
cells that were morphologically indistin-
guishable from v-p3k—induced foci (Fig.
2C). The efficiency of focus formation was
~100 foci per microgram of DNA for
RCAS-c-P3k versus ~1000 foci per mi-
crogram of DNA for RCAS-v-P3k.
RCAS-c-P3k also induced hemangiosar-

Fig. 3. (A and B) Expression of v-P3k protein in
ASV 16-infected CEFs and CEFs transfected with
RCAS-v-P3k. (C) Immunocprecipitation of in vitro—
translated c-P3k or of p3k-transfected CEFs with
anti-p110 (7). (A) CEFs were infected with ASV 16
(lane 3) or transfected with RCAS-v-P3k (lane 1) or
RCAS (lane 2). Cells were maintained in Dulbec-
co's modified Eagle's medium (DMEM,) (high glu-
cose) supplemented with 2 mM L-glutamine and
10% calf serum. Cells were starved by incubation
in DMEM without methionine for 30 min, labeled
with 25S-methionine for 2 hours, and then lysed in
radioimmunoprecipitation assay (RIPA) buffer

REPORTS

comas in chickens at the site of injection
after 1 to 2 weeks. When compared with
v-p3k tumors, tumors induced by the cel-
lular gene appeared to be smaller and to
grow more slowly, but they were histolog-
ically identical to the ones represented in
Fig. 2E. The mutations in v-p3k responsi-
ble for the enhanced tumorigenicity of the
viral gene have not yet been identified.

Immunoprecipitation of extracts from
c-p3k—transformed CEFs with anti-p110 (7)
revealed a protein of 110 kD that comi-
grated with the in vitro-translated c-P3k
(Fig. 3C). The immunoprecipitates of c-P3k
expressed from RCAS had Pl 3-kinase ac- -
tivity, as did the anti-p110 immunoprecipi-
tates from RCAS-v-P3k—transformed cells
(Fig. 4A). No activity was detected in anti-
pl10 immunoprecipitates from CEFs pro-
ducing RCAS, which suggested that endog-
enous pl10a is expressed at low levels in
CEFs.

The levels of the PI 3-kinase lipid prod-
ucts phosphatidylinositol 3,4-bisphosphate
(P1-3,4-P,) and phosphatidylinositol 3,4,5-
trisphosphate (P1-3,4,5-P;) were higher in
serum-starved CEFs infected with the
RCAS-v-P3k or RCAS-c-P3k retroviruses
than in RCAS-infected CEFs. The addition
of the platelet-derived growth factor
(PDGF) to the starved cells increased the
levels of PI-3,4-P, and PI-3,4,5-P; in all
cultures but had a greater effect on p3k-

transformed CEFs (Fig. 4B). These results

?‘-'“ -86
- =

[150 mM NaCl, 10 mM tris-HCL (pH 7.4), 0.1% SDS, 1.0% Triton X-100, C
and 1.0% sodium deoxycholate]. A monoclonal antibody against Gag p19

was used for immunoprecipitation (6). Immune complexes were collected
with protein A-Sepharose CL 4B (Pharmacia) and washed with RIPA buff-
er, and the proteins were resolved by 7.5% SDS-polyacrylamide gel elec-
trophoresis (SDS-PAGE) and autoradiography. The arrow indicates the

; KD
> - == 905

- 69

Gag-v-P3k protein. (B) CEFs were transfected with RCAS-v-P3k (lanes 1
through 3) or infected with ASV 16 (lanes 4 through 6) and labeled with
355-methionine as in (A). Cells were lysed and immunoprecipitated with - 48
antibody to Gag. Immune complexes were dissociated in 1% SDS, and
20% of the sample was diluted with 2X SDS-PAGE buffer (lanes 1 and 4).

The rest was diluted with RIPA buffer for reimmunoprecipitation with anti-

1 2 3

Gag (lanes 2 and 5) or anti-p110 (7) (lanes 3 and 6). Proteins were resolved by SDS-PAGE electro-
phoresis. The arrow indicates the Gag-v-P3k protein. (C) The c-P3k cDNA clone was transcribed and
translated in vitro with T3 RNA polymerase and rabbit reticulocyte lysate in the presence of 5S-
methionine. Immunoprecipitations of in vitro—translated c-P3k (lane 1) or of RCAS- (lane 2) or RCAS-
c-P3k- (lane 3) transfected and ®5S-methionine—labeled CEFs were performed with anti-p110 (7). The
precipitates were dissolved in 2x SDS-PAGE buffer and separated by SDS-PAGE electrophoresis. The

arrow indicates the c-P3k protein.
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Fig. 4. (A) In vitro and (B) in vivo Pl A
3-kinase activity of CEFs infected
with RCAS-c-P3k or RCAS-v-P3k
retroviruses. (C) Activation of Akt ki-
nase in CEFs infected with RCAS-
c-P3k or RCAS-v-P3k retroviruses.
(A) CEFs were infected with RCAS
(lane 1), RCAS-c-P3k (lane 2), or
RCAS-v-P3k retroviruses (lane 3)
and lysed. Immunoprecipitations
were performed with anti-p110 (7).
After being washed, the pellet was
assayed for Pl 3-kinase activity (4).
PIP, phosphoinositol phosphate;
Ori, origin. (B) CEFs infected with
RCAS, RCAS-v-P3k, or RCAS-c-

PIP>
=' &

I !
o> @ ‘

P3k retroviruses were serum-starved for 24 hours and labeled
with #2P-orthophosphate for 3 hours. Cells were left unstimu-
lated (solid bars) or were stimulated with platelet-derived

PI-3,4-P, levels

@

4

10‘£
t
[
g

2

PI-4-P + P1-4,5-P; (%)

S
RCAS

growth factor (hatched bars) for 5 min. Cellular lipids were extracted, deacy- i
lated, and separated by high-performance liquid chromatography by means of

an anion-exchange column (23). Phosphorous-32—containing peaks were de-
tected and quantitated with a Packard Radiomatic. Phosphoinositide peaks
were identified on the basis of retention time and by proximity to a *H-inositol-
1,3,4-trisphosphate standard. The radicactivity in the PI-3,4-P, and PI-3,4,5- 1

P, peaks is expressed as the percentage of the radioactivity in Pl-4-P plus

Pl-4,5-P,. Values represent the mean = SEM from three experiments. (C) CEFs were infected with
RCAS (lane 1), RCAS-c-P3k (lane 2), or RCAS-v-P3k (lane 3) retroviruses. Cells were lysed, and Akt was
immunoprecipitated with a rabbit polyclonal antibody against a peptide composed of the 15 COOH-
terminal amino acids of Akt (8). In vitro assays of Akt activation were performed as in (8) with histone H2B
as substrate. The arrow indicates phosphorylated histone H2B.

demonstrate that the P3k and Gag-v-P3k
proteins have catalytic activity in intact
cells.

Recent studies have suggested that the
serine-threonine protein kinase encoded by
the akt proto-oncogene is a target of Pl
3-kinase (8, 9). To test for enhanced Akt
activity in p3k-transformed cells, in vitro
kinase reactions were performed with im-
munoprecipitates from CEFs that were in-
fected with the RCAS-c-P3k or RCAS-v-
P3k retroviruses or the RCAS virus alone in
the presence of histone H2B, which is a
specific Akt substrate (9, 10). Akt kinase
was activated, as demonstrated by the in-
creased phosphorylation of H2B (Fig. 4C),
in CEFs that were transformed by v-p3k or
c-p3k but not in RCAS-infected CEFs. As a
control, the expression of endogenous Akt
protein in these cells was verified with im-
munoblotting. The up-regulation of Akt in
p3k-transformed CEFs suggests that this ki-
nase may play a role in the transformation
process.

Components of cellular signal trans-
duction generally have oncogenic poten-
tial. The identification of a PI 3-kinase
homolog as the putative oncogene in a
retrovirus is consistent with the fact that
PI 3-kinase occupies an important nodal
position in cellular signaling. Pl 3-kinase
is a heterodimeric enzyme consisting of a
110-kD catalytic and an 85-kD regulatory
subunit (11). The regulatory subunit con-
tains several modular protein binding do-
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mains, including two src homology 2
(SH2) domains and an SH3 domain, as
well as proline-rich and phosphotyrosine
target sequences for SH3 and SH2, respec-
tively (12). These domains mediate regu-
latory signals addressed to and issued by PI
3-kinase. PI 3-kinase and its lipid products
have multiple functions, including cell
survival (protection from apoptosis) (13),
secretion (I4), vesicle trafficking (15),
differentiation (16), regulation of cy-
toskeletal structure (17), and cell growth
(18). A role for PI 3-kinase in oncogenic
transformation is suggested by analyses of
several viral oncoproteins (19). Mutant
forms of the polyomavirus middle T pro-
tein, Src, and Abl that fail to bind to PI
3-kinase are also impaired in oncogenesis.
Our observation that the catalytic sub-
units v-P3k and ¢-P3k are oncogenic pro-
vides the basis for further studies on the
function of PI 3-kinase in the regulation of
normal and cancerous cell growth.
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