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Osmotic Activation of the HOG MAPK Pathway 
via Stel I p MAPKKK: Scaffold Role 

of Pbs2p MAPKK 
Francesc Posas and Haruo Saito* 

Exposure of the yeast Saccharomyces cerevisiae to high extracellular osmolarity induces 
the Slnl p-Ypdl p-Sskl p two-component osmosensor to activate a mitogen-activated 
protein (MAP) kinase cascade composed of the Ssk2p and Ssk22p MAP kinase kinase 
kinases (MAPKKKs), the Pbs2p MAPKK, and the Hogl p MAPK. A second osmosensor, 
Shol p, also activated Pbs2p and Hogl p, but did so through the Stel 1 p MAPKKK. 
Although Stel 1 p also participates in the mating pheromone-responsive MAPK cascade, 
there was no detectable cross talk between these two pathways. The MAPKK Pbs2p 
bound to the Shol p osmosensor, the MAPKKK Stel 1 p, and the MAPK Hogl p. Thus, 
Pbs2p may serve as a scaffold protein. 

MAP kinase cascades are common eukaryot- 
ic signaling modules that consist of a MAP 
kinase (MAPK), a MAPK kinase (MAPKK), 
and a MAPKK kinase (MAPKKK) (1 ). In S. 
cerevisim, two independent osmosensors regu- 
late the common HOG (high osmolarity glyc- 
erol response) signal transduction pathway, 
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which includes the Pbs2p MAPKK and 
Hoglp MAPK (2-5). The Slnlp-Ypdlp- 
Ssklp two-component osmosensor uses a 
multistep phosphorelay mechanism to regu- 
late the redundant MAPKKKs Ssk2p and 
Ssk22p (2, 3, 6,  7). Activated Ssk2p or Ssk22p 
then phosphorylates and activates the Pbs2p 
MAPKK. The second osmosensor, Sholp, con- 
tains four transmembrane segments and a 
COOH-terminal cytoplasmic region with an 
SRC homology 3 (SH3) domain (3). The in- 
teraction between an NH2-terminal proline- 
rich motif in Pbs2p and the Sholp SH3 
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Fig. 1. Phosphorylation and activation of Pbs2p 
by the Stel 1 p MAPKKK. (A) Phosphorylation of 
Pbs2p in vivo. The indicated mutants expressing 
GST-PBS2(K-M) were grown in phosphate-de- 

NaCl - + - + - +  - + 

pleted medium,' incubated with [32~]okhophos- YPD YPD. 

phate, and subjected (+) or not (-) to a brief sorbitol 

osmotic shock (0.4 M NaCl for 2 min) (7 7). GST-PBS2(K-M) was purified by association with glutathione- 
Sepharose beads and subjected to SDS-PAGE. Proteins were transferred to a nylon membrane and 
detected by autoradiography. The same filter was also probed with a monoclonal antibody to GST 
(anti-GST). Arrowheads indicate the position of GST-PBS2(K-M). (6) Osmosensitivity and sterilty of 
0s-306 (ssk2A ssk22A ste7 1-306). 0s-306 was transformed with centromeric plasmids containing the 
indicated genes. The transformants were spotted on YPD plates with or without 1.5 M sorbitol. Mating 
competency was assayed by the replica method (78). (C) High osmolarity-induced tyrosine phospho- 
rylation of Hoglp in strain FP50 (MATa ura3 leu2 his3 ssk2::LEU2 ssk22::LEU2 ste17::HIS3) trans- 
formed with plasmids containing the indicated genes. Cells were collected before (-) or 5 min after (+) 
the addition of NaCl to afinal concentration of 0.4 M. Tyrosine-phosphorylated Hogl p was detected by 
immunoblot analysis with monoclonal antibody 4G10 to phosphotyrosine. (0) High osmolarity-induced 
tyrosine phosphorylation of Hogl p in various mutant strains. Cells were treated as in (C) and tyrosine- 
phosphorylated Hogl p was detected by immunoblot analysis. (E) Osmosensitivity of various mutants. 
The indicated genes were disrupted (73) in the wild-type (WT) strain TM141 (MATa ura3 leu2 trpl his3) 
and the ssk2A ssk22A strain TM254 (MATa ura3 leu2 his3 ssk2::LEUZ ssk22::LEU2), and the osmo- 
sensitivity of the resulting cells was tested as in (B). 

domain is essential for the activation of Pbs2p 
by Sholp (3). We now show that the activa- 
tion of Pbs2p by Sholp is mediated by the 
Ste l lp  MAPKKK, which is also an integral 
component of the mating pheromone re- 
sponse pathway (8-10). We propose a mech- 
anism to explain how potential cross talk 
between the mating and the HOG signaling 
pathways is prevented. 

Phosphorylation of Pbs2p appears to  be 
required for its activation by the Sho lp  
osmosensor because Pbs2p containing mu- 
tations at the activating phosphorylation 
sites (Ser514 + A l a  and Thr518 + Ala) is 
no t  activated by Sho lp  (3). T o  test the 
possibility that a kinase other than Ssk2p 
and Ssk22p can phosphorylate and acti- 
vate PbsZp, we examined Pbs2p phospho- 
rylation in vivo w i th  the glutathione S- 
transferase (GST) fusion protein GST- 
PBSZ(K-M) (1 1 ). PBSZ(K-M) contains a 
Lys389 +Met  mutation that inactivates its 

kinase activity, and thus it cannot undergo 
autophosphorylation. In ssk2A ssk22A 
double-mutant cells, GST-PBSZ(K-M) 
was highly phosphorylated after a brief 
osmotic shock (Fig. 1A). This phosphoryl- 
ation event was apparently dependent o n  
the Sho lp  osmosensor, because GST- 
PBSZ(K-M) recovered from the ssk2A 
ssk22A shol A triple mutant after osmotic 
shock was not  phosphorylated (Fig. 1A). 
These results suggest that a protein kinase 
other than Ssk2p and Ssk22p can phos- 
phorylate Pbs2p in cells exposed to  osmot- 
i c  shock. 

T o  identify the protein kinase respon- 
sible for the Sholp-mediated phosphoryl- 
ation o f  PbsZp, we screened for mutants o n  
the basis o f  the assumption that mutation- 
al inactivation o f  the responsible kinase, 
in conjunction w i th  ssk2A and ssk22A mu- 
tations, would render the mutant cell in- 
capable o f  activating Pbs2p and thus 
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Fig. 2. Activation of the HOG pathway by a 
constitutively active Stel 1 p (STE11 AN) through 
Pbs2p phosphotylation. (A) Pbs2p-dependent 
tyrosine phosphorylation of Hogl p induced by 
the expression of SSK2AN or STEl IAN (19). 
The plasmids pGal-SSUAN, pGal-STE11 AN, 
or pYES2 (vector) were introduced into wild-type 
(WT) strain TM141 or its pbs2A @bs2::LEU2) 
derivative. Cells were grown in synthetic medium 
with raffinose, and the GAL1 promoter was in- 
duced with galactose (2). Samples were taken 
before (-) or 1 hour after (+) addition of galac- 
tose. Wild-type cells were treated (+) or not (-) 
with 0.4 M NaCl for 5 min. Tyrosine-phosphoryl- 
ated Hogl p was detected by immunoblot anal- 
ysis with antibody 4G10. (B) In vitro phosphotyl- 
ation of Pbs2p by GST-SSK2AN or GST- 
STEl IAN. Purified GST fusion proteins were in- 
cubated with GST-PBSP(K-M) in the presence of 
[y-32P]ATP (adenosine triphosphate) and buffer 
(20). 32P-Labeled GST-PBS2(K-M) was detect- 
ed by autoradiography after SDS-PAGE. (C) Ac- 
tivation of both the mating and HOG pathways 
by overexpression of STE11 AN. Host cells were 
transformed with the plasmids pGal-SSWAN or 
pGal-STEl 1 AN. The transformants were spot- 
ted on selective medium containing either glu- 
cose or galactose. Growth was scored after 4 
days at 30°C. 

would confer osmosensitivity. One such 
synthetic mutant, OS-306, was sterile as 
well as osmosensitive. W e  isolated 20 
genomic clones that complemented the 
osmosensitivity of 0s-306, o f  which 10 
contained SSK2 and another 10 al l  con- 
tained the STEl1  gene (1 2). The STEl1  
genomic clones complemented both the 
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sterility and the osmosensitivity of OS- 
306 (Fig. 1B). To exclude the possibility 
that STEl1 was merely acting as a multi- 
copy suppressor of 0s-306, we disrupted 
the STEl1 gene in an ssk2A ssk22A strain. 
Several independently isolated ssk2A 
ssk22A stel 1A triple mutants were all ster- 
ile and osmosensitive (Fig. 1E). Disruption 
of STEl1 alone had no effect on Pbs2p 
phosphorylation in vivo, but Pbs2p was 
not phosphorylated in response to osmotic 
shock in an ssk2A ssk22A stel lA triple 
mutant (Fig. 1A). Thus, S te l lp  contrib- 
utes to the activation of Pbs2p. 

Tyrosine phosphorylation of Hoglp is a 
sensitive measure of the activation state of 

Pbs2p (2, 5). However, Hoglp phospho- 
rylation was not observed in response to 
osmotic shock in ssk2A ssk22A stellA 
cells, indicating that this triple mutant has 
completely lost the capacity to activate 
Pbs2p (Fig. 1C). Transformation of the 
ssk2A ssk22A stel 1A triple mutant with a 
plasmid containing either SSK2+, 
SSK22+, or STEll+,  but not SHOl+, re- 
stored tyrosine phosphorylation of Hoglp 
in response to osmotic shock, indicating 
the redundant roles of SskZp, Ssk22p, and 
S te l lp  in Pbs2p activation. Consistent 
with the notion that sholA and stellA 
mutations inactivate the same upstream 
signaling branch in the HOG pathway, 

Fig. 3. Lack of cross talk be- A 
tween the mating and HOG NaCl a factor 

pathways. (A) Time course of strain 0 5 10 1530 60 o 5 10 15 3060 Time(min) 
Hog1 p tyrosine phosphoryl- 4 Hog1 p 
ation. Yeast strains TM254 

'1 (MATa ssk2A ssk22A) or FP50 s s ~ A  ss@2A stellA a ~ o g l p  
(MATa ssk2A ssk22A stel l A )  
were exposed to 0.4 M NaCl or 
5 pM a factor for the ind~cated 
times, and tyrosine-phosphoryl- B 
ated Hoglp was detected by 
immunoblot analysis with anti- 
body 4G10. (B) Expression of o 60 

Ul rr FUS1-lag. TM254 or FP50 
E B strains were transformed with 2~ 

the pSB231 (FUS1-lag) re- w = 40  
porter plasmid (15). Transfor- 2 
mants were grown to exponen- 9 
tial phase in YPD buffered at pH 2 -  2 0 
3.5 (21) and exposed to 0.4 M 
NaCl or 5 pM a factor for the 0 
indicated times. p-Galactosi- lime (hours) 1 2 1 2 
dase activity was measured and s s m  ssk22A ste 1 1~ ssk2A ssk22A 
expressed in Miller units (22). 
Data are means + SD of 12 assays (triplicate determinations with four independent transformants). 

a factor 

GST- , 
SHO1 

neither ssk2A ssk22A sholA nor ssk2A 
ssk22A stel 1A triple-mutant cells showed 
tyrosine phosphorylation of Hoglp in re- 
sponse to osmotic shock (Fig. ID). In a 
sholA stel lA double mutant, in which 
SSK2 and SSK22 are functional, tyrosine 
phosphorylation of Hoglp in response to 
osmotic shock was detected (Fig. ID). 

Because S te l lp  is a MAPKKK for the 
mating pheromone response pathway (9, 
lo), we tested whether other components 
in the mating pathway also participate in 
the HOG pathway. Thus, we disrupted 
either STEZO, STEI I ,  STE7, STES, or 
the control SHO1 gene in an ssk2A ssk22A 
background (13). Only the stellA and 
shol A mutations were synthetically osmo- 
sensitive with ssk2A ssk22A (Fig. 1E). Fur- 
thermore, disruption of two other genes 
that encode protein kinases similar to 
Ste2Op-CLA4 and YOLI 13- had no ef- 
fect on osmosensitivity (14). Thus, STEl1 
may be the only gene shared between the 
mating and the HOG pathways. 

Kinases in the MAPKKK family can be 
constitutively activated by eliminating their 
NH,-terminal noncatalytic domains (9). In- 
deed, expression of Ssk2p or Stellp with 
NH,-terminal truncations (SSK2AN and 
STEllAN, respectively) resulted in Pbs2p 
mediated tyrosine phosphorylation of Hoglp 
in the absence of osmotic stress (Fig. 2A). 
Thus, both SSKZAN and STE11AN can ac- 
tivate Pbs2p in the absence of upstream stim- 
uli. Both GST-STE1 IAN and GST-SSK2AN 
proteins also efficiently phosphorylated the 
GST-PBS2(K-M) protein in vitro (Fig. 2B). 

Continuous activation of the Hoglp 
MAPK by SSK2AN is lethal to yeast cells, 
and this lethality is suppressed by disrup- 

G a l - S T E l l  H A  Gal-HOGlHA Gal-STE11 H A  Gal-HOGIHA 

Gal - + - + - + - +  - + - + - + - +  

GST- * 
PBS2 - STEl l  HA 

dPBS2HA 

Anti-GST lmmunoblot Anti-HA lmmunoblot GST* ,, .-.-- 
Anti-GST lrnrnunoblot Anti-HA lrnrnunoblot 

Fig. 4. Association of Pbs2p with Shol p, Stel 1 p, and Hogl p. (A) Coprecipi- 
tation of hemagglutinin (HA)-tagged Pbs2p (PBSPHA) with GST-SHO1 . The 
wild-type yeast strain TM141 was cotransformed with either the p426TEG 
(GST) or p426TEG-SH01 (GST-SHO1) plasmids, and DNA encoding either 
HA-tagged Pbs2p (Gal-PBS2HA) or Stel 1 p (Gal-STE1 1 HA) under the control 
of the GALl promoter in the YCplF vector (23). Cells were grown in glucose (-) 
or galactose (+), the latter to induce expression of PBS2HA or STE11 HA. Cells 
were lysed, and proteins were purified by association with glutathione-Sepha- 

rose beads (24) and subjected to immunoblot analysis with antibodies to GST 
(anti-GST) or to HA (anti-HA). (B) Coprecipitation of STE11 HA and HOG1 HA 
with GST-PBS2. TM141 was cotransformed with either p426TEG vector 
(GST) or p426TEG-PBS2 (GST-PBS2) (this plasmid contains the catalytically 
inactive Lys389 += Met mutation to prevent the toxicity of Pbs2p overexpres- 
sion), and DNA encoding either HA-tagged Stel 1 p (Gal-STE1 1 HA) or Hogl p 
(Gal-HOG1 HA) under the control of the GALl promoter in the YCplF vector. 
Cells and samples were processed as in (A). 
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tion of the PBS2 gene (3). Expression of 
STE11AN was also toxic to cells (Fig. 
2C). The STEllAN lethality was sup- 
pressed partially by the pbs2A mutation 
and completely by the ste7A pbs2A double 
mutation. In contrast, ste7A alone had 
little suppressive effect. Thus, the 
STE11AN lethality is caused by the hyper- 
activation of both the mating pheromone 
pathway and the HOG pathway. 

We investigated whether the activation 
of Stellp by osmotic stress results in the 
activation of mating responses and whether 
activation of Stellp by mating factors re- 
sults in activation of the HOG pathway. To 
assess activation of the mating pathway, we 
measured the expression of the FUSl gene 
with a FUS1-lacZ promoter fusion construct 
(15). Activation of the HOG pathway was 
assessed by measuring tyrosine phosphoryl- 
ation of Hoglp. These experiments were 
performed with ssk2A ssk22A double-mu- 
tant cells, so that the activation of the 
Pbs2p MAPKK was dependent solely on the 
Stellp MAPKKK. The cu mating factor 
induced expression of FUSI-hZ, but not 
tyrosine phosphorylation of Hoglp (Fig. 3). 
In contrast, osmotic shock induced tyrosine 
phosphorylation of Hoglp but not FUSI- 
lacZ expression. In ssk2A ssk22A stel 1 A tri- 
ple-mutant cells, no response to either the 
mating factor or osmotic shock was detect- 
ed. Thus, although the Stellp MAPKKK 
participates in both the mating and HOG 
pathways, there is little or no cross talk 
between these pathways. 

The scaffold protein Ste5p interacts 
with the Stellp MAPKKK, Ste7p 
MAPKK, Fudp-Ksslp MAPK (16), and G 
protein By subunits (17). Thus, the wm- 
plex formed around SteSp may allow the 
incoming signal from the mating factor re- 
ceptor to flow only through this complex. 
The previous observation that the Sholp 
osmosensor interacts with Pbs2p suggests 
that another signaling complex may be 
formed by the components of the HOG 
signaling pathway (3). Indeed, coprecipita- 
tion experiments revealed that Sholp was 
associated with PbQp but not with Stel lp 

in intact cells (Fig. 4A), and that Pbs2p 
interacts with both Stel lp and Hoglp (Fig. 
4B). - ,  

Our results are consistent with the for- 
mation of a multiprotein complex that 
includes Sholp, Stellp, PbsZp, and 
Hoglp, although it remains to be shown 
that these interactions occur simulta- 
neously. Formation of such a multiprotein 
complex would restrict the osmotic stress- 
activated Stellp MAPKKK to phospho- 
rylating only the Pbs2p MAPKK, like the 
Ste5p complex ensures that the mating 
pheromone-activated Stellp MAPKKK 
phosphorylates only the Ste7p MAPKK 
(Fig. 5). In this sense, both SteSp and 
Pbs2p appear to serve a similar scaffold 
function, even though they are not struc- 
turally related. Given that several distinct 
MAP kinase cascades coexist in mamma- 
lian cells, formation of similar multipro- 
tein complexes may be a general mecha- 
nism to prevent inappropriate cross talk. 
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