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Osmotic Activation of the HOG MAPK Pathway
via Ste11p MAPKKK: Scaffold Role
of Pbs2p MAPKK

Francesc Posas and Haruo Saito*

Exposure of the yeast Saccharomyces cerevisiae to high extracellular osmolarity induces
the SIin1p-Ypdip-Sskip two-component osmosensor to activate a mitogen-activated
protein (MAP) kinase cascade composed of the Ssk2p and Ssk22p MAP kinase kinase
kinases (MAPKKKs), the Pbs2p MAPKK, and the Hog1p MAPK. A second osmosensor,
Sho1p, also activated Pbs2p and Hog1p, but did so through the Ste11p MAPKKK.
Although Ste11p also participates in the mating pheromone-responsive MAPK cascade,
there was no detectable cross talk between these two pathways. The MAPKK Pbs2p
bound to the Sho1p osmosensor, the MAPKKK Ste11p, and the MAPK Hog1p. Thus,

Pbs2p may serve as a scaffold protein.

MAP kinase cascades are common eukaryot-
ic signaling modules that consist of a MAP
kinase (MAPK), a MAPK kinase (MAPKK),
and a MAPKK kinase (MAPKKK) (I1). In S.
cerevisiae, two independent osmosensors regu-
late the common HOG (high osmolarity glyc-
erol response) signal transduction pathway,

Division of Tumor Immunology, Dana-Farber Cancer In-
stitute, and Department of Biological Chemistry and Mo-
lecular Pharmacology, Harvard Medical School, Boston,
MA 02115, USA.

*To whom correspondence should be addressed. E-mail:
haruo_saito@dfci.harvard.edu

which includes the Pbs2p MAPKK and
Hoglp MAPK (2-5). The Slnlp-Ypdlp-
Ssklp two-component osmosensor uses a
multistep phosphorelay mechanism to regu-
late the redundant MAPKKKs Ssk2p and
Ssk22p (2, 3, 6, 7). Activated Ssk2p or Ssk22p
then phosphorylates and activates the Pbs2p
MAPKK. The second osmosensor, Sholp, con-
tains four transmembrane segments and a
COQH-terminal cytoplasmic region with an
SRC homology 3 (SH3) domain (3). The in-
teraction between an NH,-terminal proline-
rich motif in Pbs2p and the Sholp SH3
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Fig. 1. Phosphorylation and activation of Pbs2p
by the Ste11p MAPKKK. (A) Phosphorylation of
Pbs2p in vivo. The indicated mutants expressing
GST-PBS2(K-M) were grown in phosphate-de-
pleted medium, incubated with [*?Plorthophos-
phate, and subjected (+) or not () to a brief
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osmotic shock (0.4 M NaCl for 2 min) (77). GST-PBS2(K-M) was purified by association with glutathione-
Sepharose beads and subjected to SDS-PAGE. Proteins were transferred to a nylon membrane and
detected by autoradiography. The same filter was also probed with a monoclonal antibody to GST
(anti-GST). Arrowheads indicate the position of GST-PBS2(K-M). (B) Osmosensitivity and sterility of
0S-306 (ssk2A ssk22A ste1-306). 0OS-306 was transformed with centromeric plasmids containing the
indicated genes. The transformants were spotted on YPD plates with or without 1.5 M sorbitol. Mating
competency was assayed by the replica method (78). (C) High osmolarity-induced tyrosine phospho-
rylation of Hog1p in strain FP50 (MATa ura3 leu2 his3 ssk2::LEUZ ssk22::LEUZ ste11::HIS3) trans-
formed with plasmids containing the indicated genes. Cells were collected before (—) or 5 min after (+)
the addition of NaCl to a final concentration of 0.4 M. Tyrosine-phosphorylated Hog1p was detected by
immunoblot analysis with monoclonal antibody 4G10 to phosphotyrosine. (D) High osmolarity—induced
tyrosine phosphorylation of Hog1p in various mutant strains. Cells were treated as in (C) and tyrosine-
phosphorylated Hog1p was detected by immunoblot analysis. (E) Osmosensitivity of various mutants.
The indicated genes were disrupted (73) in the wild-type (WT) strain TM141 (MATa ura3 leuZ trp1 his3)
and the ssk2A ssk22A strain TM254 (MATa ura3 leu2 his3 ssk2::LEUZ ssk22::L EUZ2), and the osmo-

sensitivity of the resulting cells was tested as in (B).

domain is essential for the activation of Pbs2p
by Sholp (3). We now show that the activa-
tion of Pbs2p by Sholp is mediated by the
Stellp MAPKKK, which is also an integral
component of the mating pheromone re-
sponse pathway (8-10). We propose a mech-
anism to explain how potential cross talk
between the mating and the HOG signaling
pathways is prevented.

Phosphorylation of Pbs2p appears to be
required for its activation by the Sholp
osmosensor because Pbs2p containing mu-
tations at the activating phosphorylation
sites (Ser’'* — Ala and Thr’'® — Ala) is
not activated by Sholp (3). To test the
possibility that a kinase other than Ssk2p
and Ssk22p can phosphorylate and acti-
vate Pbs2p, we examined Pbs2p phospho-
rylation in vivo with the glutathione S-
transferase (GST) fusion protein GST-
PBS2(K-M) (I1). PBS2(K-M) contains a
Lys*®® — Met mutation that inactivates its
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kinase activity, and thus it cannot undergo
autophosphorylation. In ssk2A  ssk22A
double-mutant cells, GST-PBS2(K-M)
was highly phosphorylated after a brief
osmotic shock (Fig. 1A). This phosphoryl-
ation event was apparently dependent on
the Sholp osmosensor, because GST-
PBS2(K-M) recovered from the ssk2A
ssk22A sholA triple mutant after osmotic
shock was not phosphorylated (Fig. 1A).
These results suggest that a protein kinase
other than Ssk2p and Ssk22p can phos-
phorylate Pbs2p in cells exposed to osmot-
ic shock.

To identify the protein kinase respon-
sible for the Sholp-mediated phosphoryl-
ation of Pbs2p, we screened for mutants on
the basis of the assumption that mutation-
al inactivation of the responsible kinase,
in conjunction with ssk2A and ssk22A mu-
tations, would render the mutant cell in-
capable of activating Pbslp and thus
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Fig. 2. Activation of the HOG pathway by a
constitutively active Ste11p (STE11AN) through
Pbs2p phosphorylation. (A} Pbs2p-dependent
tyrosine phosphorylation of Hog1p induced by
the expression of SSK2AN or STE11AN (79).
The plasmids pGal-SSK2AN, pGal-STE11AN,
or pYES2 (vector) were introduced into wild-type
(WT) strain TM141 or its pbs2A (pbs2::LEU2)
derivative. Cells were grown in synthetic medium
with raffinose, and the GAL7 promoter was in-
duced with galactose (2). Samples were taken
before (—) or 1 hour after (+) addition of galac-
tose. Wild-type cells were treated (+) or not (~)
with 0.4 M NaCl for 5 min. Tyrosine-phosphoryl-
ated Hog1p was detected by immunoblot anal- -
ysis with antibody 4G10. (B) In vitro phosphoryl-
ation of Pbs2p by GST-SSK2AN or GST-
STE11AN. Purified GST fusion proteins were in-
cubated with GST-PBS2(K-M) in the presence of
[y-32P]JATP (adenosine triphosphate) and buffer
(20). 32P-Labeled GST-PBS2(K-M) was detect-
ed by autoradiography after SDS-PAGE. (C) Ac-
tivation of both the mating and HOG pathways
by overexpression of STE11AN. Host cells were
transformed with the plasmids pGal-SSK2AN or
pGal-STE11AN. The transformants were spot-
ted on selective medium containing either glu-
cose or galactose. Growth was scored after 4
days at 30°C.

would confer osmosensitivity. One such
synthetic mutant, OS-306, was sterile as
well as osmosensitive. We isolated 20
genomic clones that complemented the
osmosensitivity of OS-306, of which 10
contained SSK2 and another 10 all con-
tained the STEII gene (12). The STEII

genomic clones complemented both the

1703



sterility and the osmosensitivity of OS-
306 (Fig. 1B). To exclude the possibility
that STE1] was merely acting as a multi-
copy suppressor of OS-306, we disrupted
the STE11 gene in an ssk2A ssk22A strain.

Several independently isolated sskZA
ssk22A stel IA triple mutants were all ster-
ile and osmosensitive (Fig. 1E). Disruption
of STEI] alone had no effect on Pbs2p
phosphorylation in vivo, but PbsZp was
not phosphorylated in response to osmotic
shock in an ssk2A ssk22A stel 1A triple
mutant (Fig. 1A). Thus, Stellp contrib-
utes to the activation of Pbs2p.

Tyrosine phosphorylation of Hoglp is a
sensitive measure of the activation state of

Fig. 3. Lack of cross tak be- A
tween the mating and HOG
pathways. (A) Time course of
Hoglp tyrosine phosphoryl-
ation. Yeast strains TM254
(MATa ssk2A ssk22A) or FP50
(MATa ssk2A ssk22A ste11A)
were exposed to 0.4 M NaCl or
5 pM « factor for the indicated
times, and tyrosine-phosphoryl- B

Strain

ssk2A ssk22A mi

5sk2A ssk22A stel1A
e

Pbs2p (2, 5). However, Hoglp phospho-
rylation was not observed in response to
osmotic shock in ssk2A ssk22A stel 1A
cells, indicating that this triple mutant has
completely lost the capacity to activate
Pbs2p (Fig. 1C). Transformation of the
ssk2A ssk22A stel 1A triple mutant with a
plasmid containing either SSK2%,
SSK22*, or STEI1™, but not SHOI™, re-
stored tyrosine phosphorylation of Hoglp
in response to osmotic shock, indicating
the redundant roles of Ssk2p, Ssk22p, and
Stellp in Pbs2p activation. Consistent
with the notion that sholA and stellA
mutations inactivate the same upstream
signaling branch in the HOG pathway,
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the pSB231 (FUST-lacZ) re-
porter plasmid (75). Transfor-
mants were grown to exponen-
tial phase in YPD buffered at pH
3.5 (21) and exposed to 0.4 M
NaCl or 5 pM « factor for the 0
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Data are means + SD of 12 assays (triplicate determinations with four independent transformants).

neither ssk2A ssk22A sholA nor ssk2A
ssk22A stel IA triple-mutant cells showed
tyrosine phosphorylation of Hoglp in re-
sponse to osmotic shock (Fig. 1D). In a
sholA stellA double mutant, in which
SSK2 and SSK22 are functional, tyrosine
phosphorylation of Hoglp in response to
osmotic shock was detected (Fig. 1D).

Because Stellp is a MAPKKK for the
mating pheromone response pathway (9,
10), we tested whether other components
in the mating pathway also participate in
the HOG pathway. Thus, we disrupted
either STE20, STE!L1, STE7, STES, or
the control SHOI gene in an ssk2A ssk22A
background (13). Only the stellA and
shol A mutations were synthetically osmo-
sensitive with ssk2A ssk22A (Fig. 1E). Fur-
thermore, disruption of two other genes
that encode protein kinases similar to
Ste20p—CLA4 and YOLI13—had no ef-
fect on osmosensitivity (14). Thus, STEI
may be the only gene shared between the
mating and the HOG pathways.

Kinases in the MAPKKK family can be
constitutively activated by eliminating their
NH,-terminal noncatalytic domains (9). In-
deed, expression of SskZp or Stellp with
NH,-terminal truncations (SSK2AN and
STE11AN, respectively) resulted in Pbs2p-
mediated tyrosine phosphorylation of Hoglp
in the absence of osmotic stress (Fig. 2A).
Thus, both SSK2AN and STE11AN can ac-
tivate Pbs2p in the absence of upstream stim-
uli. Both GST-STE11AN and GST-SSK2AN
proteins also efficiently phosphorylated the
GST-PBS2(K-M) protein in vitro (Fig. 2B).

Continuous activation of the Hoglp
MAPK by SSK2AN is lethal to yeast cells,
and this lethality is suppressed by disrup-
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Fig. 4. Association of Pbs2p with Sho1p, Ste11p, and Hog1p. (A) Coprecipi-
tation of hemagglutinin (HA)-tagged Pbs2p (PBS2HA) with GST-SHO1. The
wild-type yeast strain TM141 was cotransformed with either the p426TEG
(GST) or p426TEG-SHO1 (GST-SHO1) plasmids, and DNA encoding either
HA-tagged Pbs2p (Gal-PBS2HA) or Ste11p (Gal-STE11HA) under the control
of the GAL 1 promoter in the YCpIF vector (23). Cells were grown in glucose (—)
or galactose (+), the latter to induce expression of PBS2HA or STE11HA. Cells
were lysed, and proteins were purified by association with glutathione-Sepha-
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rose beads (24) and subjected to immunoblot analysis with antibodies to GST
(anti-GST) or to HA (anti-HA). (B) Coprecipitation of STE11HA and HOG1HA
with GST-PBS2. TM141 was cotransformed with either p426TEG vector
(GST) or p426TEG-PBS2 (GST-PBS2) (this plasmid contains the catalytically
inactive Lys38° — Met mutation to prevent the toxicity of Pbs2p overexpres-
sion), and DNA encoding either HA-tagged Ste11p (Gal-STE11HA) or Hog1p
(Gal-HOG1HA) under the control of the GALT promoter in the YCplF vector.
Cells and samples were processed as in (A).
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tion of the PBS2 gene (3). Expression of
STE11AN was also toxic to cells (Fig.
2C). The STE11AN lethality was sup-
pressed partially by the pbs2A mutation
and completely by the ste7A pbs2A double
mutation. In contrast, ste7A alone had
little suppressive effect. Thus, the
STE11AN lethality is caused by the hyper-
activation of both the mating pheromone
pathway and the HOG pathway.

We investigated whether the activation
of Stellp by osmotic stress results in the
activation of mating responses and whether
activation of Stellp by mating factors re-
sults in activation of the HOG pathway. To
assess activation of the mating pathway, we
measured the expression of the FUSI gene
with a FUSI-lacZ promoter fusion construct
(15). Activation of the HOG pathway was
assessed by measuring tyrosine phosphoryl-
ation of Hoglp. These experiments were
performed with ssk2A ssk22A double-mu-
tant cells, so that the activation of the
Pbs2p MAPKK was dependent solely on the
Stellp MAPKKK. The o mating factor
induced expression of FUSI-lacZ, but not
tyrosine phosphorylation of Hoglp (Fig. 3).
In contrast, osmotic shock induced tyrosine
phosphorylation of Hoglp but not FUSI-
lacZ expression. In ssk2A ssk22A stel 1A tri-
ple-mutant cells, no response to either the
mating factor or osmotic shock was detect-
ed. Thus, although the Stellp MAPKKK
participates in both the mating and HOG
pathways, there is little or no cross talk
between these pathways.

The scaffold protein Ste5p interacts
with the Stellp MAPKKK, Ste?p
MAPKK, Fus3p-Ksslp MAPK (16), and G
protein By subunits (17). Thus, the com-
plex formed around Ste5p may allow the
incoming signal from the mating factor re-
ceptor to flow only through this complex.
The previous observation that the Sholp
osmosensor interacts with Pbs2p suggests
that another signaling complex may be
formed by the components of the HOG
signaling pathway (3). Indeed, coprecipita-
tion experiments revealed that Sholp was
associated with Pbs2p but not with Stellp
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Osmoadaptation

in intact cells (Fig. 4A), and that Pbs2p
interacts with both Stellp and Hoglp (Fig.
4B).

Our results are consistent with the for-
mation of a multiprotein complex that
includes Sholp, Stellp, Pbs2p, and
Hoglp, although it remains to be shown
that these interactions occur simulta-
neously. Formation of such a multiprotein
complex would restrict the osmotic stress—
activated Stellp MAPKKK to phospho-
rylating only the Pbs2p MAPKK, like the
Ste5p complex ensures that the mating
pheromone-activated Stellp MAPKKK
phosphorylates only the Ste7p MAPKK
(Fig. 5). In this sense, both Ste5p and
Pbs2p appear to serve a similar scaffold
function, even though they are not struc-
turally related. Given that several distinct
MAP kinase cascades coexist in mamma-
lian cells, formation of similar multipro-
tein complexes may be a general mecha-
nism to prevent inappropriate cross talk.
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