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Epilepsy and Exacerbation of Brain Injury in
Mice Lacking the Glutamate Transporter GLT-1

Kohichi Tanaka,* Kei Watase, Toshiya Manabe, Keiko Yamada,
Masahiko Watanabe, Katsunobu Takahashi, Hisayuki iwama,
Toru Nishikawa, Nobutsune Ichihara, Tateki Kikuchi,
Shigeru Okuyama, Naoya Kawashima, Seiji Hori,
Misato Takimoto, Keiji Wada

Extracellular levels of the excitatory neurotransmitter glutamate in the nervous system
are maintained by transporters that actively remove glutamate from the extracellular
space. Homozygous mice deficient in GLT-1, a widely distributed astrocytic glutamate
transporter, show lethal spontaneous seizures and increased susceptibility to acute
cortical injury. These effects can be attributed to elevated levels of residual glutamate

in the brains of these mice.

The extracellular concentration of the ex-
citatory neurotransmitter L-glutamate in
the mammalian central nervous system
must be kept low to ensure a high signal-
to-noise ratio during synaptic activation
and to prevent neuronal damage from ex-
cessive activation of glutamate receptors
(1). This control is achieved by high-affin-
ity, Na™-dependent glutamate transporters
in the plasma membrane of neurons and
surrounding glial cells (2). The failure or
reversal of these transporters may contrib-
ute to cellular damage in stroke, trauma,
Alzheimer’s disease, amyotrophic lateral
sclerosis, and Huntington’s disease (3). Four
subtypes of glutamate transporters have
been defined by differences in sequence,
pharmacology, tissue distribution, and
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channel-like properties: GLAST, GLT-1,
EAACI, and EAAT4 (4). EAAC] and
EAATH4 are selectively localized to neurons,
whereas GLT-1 and GLAST are astroglial
transporters (5). However, the roles of glu-
tamate transporter subtypes in synaptic
transmission and neurotoxicity are not
known because subtype-specific inhibitors
are not available. We therefore generated
mice that lack GLT-1, using homologous
recombination.

To disrupt the mouse gene encoding
GLT-1 in E14 embryonic stem (ES) cells by
homologous recombination, we constructed
a targeting vector in which the exon encod-
ing the putative third transmembrane seg-
ment was replaced with the neomycin re-
sistance gene (Fig. 1A). Four targeted
clones were identified from 144 G418- and
gancyclovir (GANC)-resistant clones by
Southern (DNA) blotting with 5'-flanking
and 3’-flanking probes (Fig. 1A). Two mu-
tant clones were separately injected into
C57BL/6] blastocysts to produce chimeric
animals. Heterozygous animals were identi-
fied by Southern blotting and were bred
with each other to obtain homozygous an-
imals, which showed the proper structure of
the GLT-1 gene by Southern analysis (Fig.
1B). Northern (RNA) blotting showed that
brains from homozygous mutant mice con-
tain a hybridizable transcript that is similar
in size to the wild-type GLT-1 mRNA (Fig.
1C). Reverse transcription—polymerase
chain reaction experiments, followed by
Southern blot analysis with an exon-specif-
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Fig. 1. Targeted disrup- A 1 kb B 5 probe 3' probe c D

tion of the mouse gene K 0 HA o Wild llel d g ? ‘ :
encoding GLT-1. (A) Ho- B2 B3 B4 DA - b D KD e kD g
mologous  recombina- o S x 9';_" ol 116—

1 i . al " ] i TR e Sup ey
tion resulted in replace e s Targeting vector S 80- g -
ment of the 0.8-kb frag- S_W -
ment from the GLT-1 K b ARV ) 40— P
gene, including 224 bp 4 mp = AT Disrupted allele :

of exon 4 with the neo-

mycin resistance gene

(neo). Closed boxes E2 through E4, exons 2
through 4, tk, herpes simplex virus thymidine ki-
nase gene. Restriction sites are as follows: Apa |
(A), Eco RV (RV), Kpn | (K), and Not | (N). The 5'-
and 3'-flanking probes generated the 9.8-kb Kpn
I-Apa | and the 5.0-kb Eco RV fragments from the
wild-type GLT-1 gene, respectively, and the 15.2-
kb Kpn |-Apa | and the 9.1-kb Eco RV fragments
from the properly disrupted gene, respectively. (B)
Southern blot analyses of genomic DNA from tails
of the wild-type (+/+), heterozygous (+/-), and
homozygous mutant mice (—/—). Kpn |-Apa |-digested DNAs and Eco
RV-digested DNAs were hybridized with the 5'-flanking probe (left) and
3'-flanking probe (right), respectively. (C) Northern blot analysis of cerebral
RNAs from the wild-type (+/+), heterozygous (+/—), and homozygous mu-
tant (—/—) mice. (D) Protein immunoblot analysis of cerebral membrane
fractions with antibody to GLT-1. (E through L) In situ hybridization analysis of

ic probe corresponding to the disrupted re-
gion, indicated that the transcript derived
from the mutated allele lacks exon 4 (6).
However, protein immunoblot analysis (Fig.
1D) detected no GLT-1 protein in the brains
of the mutant mice (7). By in situ hybridiza-
tion with oligonucleotide probes, expression
of the four glutamate transporter subtypes
was examined in the brains of wild-type and
mutant mice (Fig. 1, E to L) (8). Hybridiza-
tion signals for GLT-1 disappeared com-
pletely from the mutant brain (Fig. 1]). The
levels of the other glutamate transporter sub-
type mRNAs were not appreciably affected
by mutation. Glutamate uptake in cortical
crude synaptosomes of mutant mice was de-
creased to 5.8% of that in synaptosomes from
wild-type mice [mean = SEM (three animals
per group) for the Michaelis constant (K_)
(at micromolar concentration) and the max-
imum uptake velocity (V__ ) (in picomoles
per minute per milligram of protein) are,
respectively: wild type, 46.1 *= 4.2,
19,716.2 = 7280.2; mutant, 22.1 = 0.46,

1139.0 * 432.1], which suggests that GLT-1
is responsible for the greatest proportion of
cerebral glutamate transport (9).

Mice heterozygous for GLT-1 were in-
distinguishable from wild-type mice. Ho-
mozygous mice were born from heterozy-
gous crosses at the frequency predicted by
= 312): 24.4% wild
type, 50.6% heterozygous, and 25.0% ho-
mozygous. The body weight and general
appearance of the homozygous mice were
normal at birth, but homozygous mice
gained weight more slowly than did wild-
type mice {Fig. 2A) and tended to die pre-
maturely (50.0% survival after 6 weeks)
(Fig. 2B). Deaths were not preceded by any
noticeable health problems. Postmortem
analyses revealed no evidence of hemor-
rhage, infarction, or ischemia that might be
associated with cardiovascular failure or
stroke and no gross abnormalities in skeletal
muscles or visceral organs. However, con-
tinuous videotape monitoring of small
groups of mice revealed the occurrence of

Mendelian ratios (n

A B
30 100
2 ~ 80
E 204 2
o = 60
g 2
Z 104 g 40
3 —o— +/+ » 5 —0— 4/.
— /- — /-
0 T r - , 0+ —— - —— e
0 20 40 60 80 0 2 4 6 8 10 12 14
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Fig. 2. Phenotypes of GLT-1 mutant mice. (A) Body weight (mean + SEM) of
homozygous (—/—) (n = 50) and wild-type (+/+) (n = 58) mice. (B) Percentage
of postnatal survival of wild-type (+/+) (h = 76) and homozygous (—/—)
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the parasagittal brain sections of the wild-type [(E) through (H)] and mutant [(I)
through (L)] mice at the second postnatal month with oligonucleotide probes
specific for the GLAST [(E) and (I)], GLT-1 [(F) and (J)], EAAC1 [(G) and (K)],
and EAAT4 [(H) and (L)) mRNAs. Arrows indicate the hippocampal CA1
region in the mutant, which lacks the GLAST and EAAC1 mRNAs. Scale
bars, 2 mm.

spontaneous epileptic seizures with behav-
ioral patterns similar to those of N-methyl-
D-aspartate  (NMDA)-induced seizures
(10), characterized by explosive running
followed by maintained opisthotonus and
straub tail (Fig. 2C). In most cases, these
mice died within a few minutes of seizure
onset. A subset of mutant mice quickly
recovered and resumed apparently normal
behavior but developed additional seizures
and died later.

To confirm profound hyperexcitability
in mutant mice, we compared the electro-
encephalogram (EEG) patterns of wild-type
and homozygous mutant mice treated with
the convulsant agent pentylenetetrazole
(PTZ), a y-aminobutyric acid receptor an-
tagonist (I1). After a single injection of
PTZ at a subconvulsive dose of 30 mg per
kilogram of body weight (30 mg/kg), high-
voltage sharp wave bursts unaccompanied
by behavioral changes were detected in mu-
tant mice, whereas no epileptiform dis-
charges were observed in wild-type mice

C D
+/+
MAP A A P IAAR A W W

e pesgdrrrAinr el

(n =78) mice. (C) Opisthotonus-like posture in a GLT-1 mutant mouse at
postnatal day 35 (P35). (D) EEG of wild-type (+/+) and homozygous (—/—)
mice after PTZ administration. The high-voltage sharp wave bursts are
underlined.
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Fig. 3. Kinetics of glutamatergic synaptic re-
sponses and estimation of an increase in gluta-
mate concentrations in the synaptic cleft in hip-
pocampal slices of GLT-1 mutant mice. (A) The
non-NMDA receptor-mediated EPSC in the wild-
type mouse recorded from a CA1 pyramidal cell
with whole-cell patch-clamp techniques at a hold-
ing membrane potential of —90 mV. The time con-
stant of the decaying phase of the current in this
cellwas 12.4 ms. All the traces were an average of
10 consecutive responses. (B) The NMDA recep-
tor-mediated EPSC in the wild-type mouse (con-
trol). The decay time constant was 50.1 ms. Ap-

A B
Control
GLT-1
++
L-AP5
Cc

plication of 400 pM L-APS5, a low-affinity NMDA receptor antagonist, caused a large inhibition of the
current (L-AP5). (C) The non-NMDA receptor-mediated EPSC in the mutant mouse. The decay time
constant was 11.7 ms. (D) The NMDA receptor-mediated EPSC in the mutant mouse (control). The

decay time constant was 49.2 ms.

(Fig. 2D). GLT-1 maps to the central re-
gion of mouse chromosome 2 (12), near the
region of the quantitative trait locus EL-2 of
the mouse epilepsy strain (13).

To study the role of GLT-1 at central
glutamatergic synapses, we performed elec-
trophysiological analysis in the hippocam-
pal CA1 pyramidal neurons (14). In CAl
hippocampal pyramidal neurons, stimula-
tion of the afferent fibers led to the gener-
ation of an excitatory postsynaptic current
(EPSC) that contained both the slow
NMDA and fast non-NMDA components.
No significant difference in the time course
of non-NMDA receptor-mediated EPSCs
recorded at —90 mV was found between the
wild-type [decay time constant, 11.5 + 0.8
ms {mean * SEM); n = 8] and mutant
(12.5 = 0.6 ms; n = 7) slices (Fig. 3, A and
C). There was no clear difference in the
decay time course of NMDA receptor—me-
diated EPSCs between the wild-type
(55.7 = 1.9 ms; n = 11) and mutant mice
(514 = 2.2 ms; n = 9) (Fig. 3, B and D).
These results indicate that GLT-1 does not
determine the decay rate of EPSCs in the
hippocampus and are consistent with the
observation that glutamate transporter
blockers have no effect on the decay of
EPSC:s in the hippocampus (15).

We next estimated the peak concentra-
tion and time course of free glutamate in
the synaptic cleft by analyzing the displace-

ment of a rapidly dissociating NMDA re-
ceptor antagonist, L-2-amino-5-phosphono-
pentanoic acid (L-AP5), from NMDA re-
ceptors during synaptic transmission (16).
The inhibition of NMDA EPSCs by 400
M L-AP5 in the mutant slices (26.1 *
4.6%; n = 6) was significantly less than in
the wild-type slices (53.0 = 4.0%; n = 9)
(P < 0.001), implying that the peak con-
centration of synaptically released gluta-
mate is increased in mutant mice and that
glutamate remains elevated in the synaptic
cleft for longer periods in mutant mice {Fig.
3, B and D). These results suggest that
GLT-1 is an important determinant of the
clearance of free glutamate from the synap-
tic cleft. A recent study suggests that the
uptake rate of GLT-1 is significantly slower
than the predicted time course of synapti-
cally released glutamate (17). Thus, it is
likely that binding to the transporter rather
than uptake per se removes glutamate from
the cleft. Our observation could be ac-
counted for by the absence of glutamate
binding sites.

Because excessive synaptic glutamate
leads to neuronal degeneration, we per-
formed systematic histological analysis of
the entire brain (18). We observed selective
neuronal degeneration in the hippocampal
CALl field in 7 of 22 homozygous mutant
mice aged 4 to 8 weeks (Fig. 4, A through
D). Differences in the selective destruction

Fig. 4. Selective neuronal degeneration in the hippocampal CA1 of the GLT-1 mutant mouse (C and D)
at P56 as compared to that in the wild-type mouse (A and B). (A through D) Nissl staining. Selective
neuronal loss and residual nuclear debris in the hippocampal CA1 pyramidal layer of the mutant mouse
are shown [arrows in (C)]. DG, dentate gyrus. Scale bar in (A), 100 pm; in (B), 10 um.
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Fig. 5. Wild-type and B &
mutant mouse brains 7
subjected to cold-in- 6
duced injury to the left 3
cerebral hemisphere. (A) E 2 _
Vasogenic edema of g #
wild-type (+/+) and ho- & 3
mozygous (—/—) litter- W 5
mates after cold-in-

duced brain injury. (B) &
Comparison of edema 04
formation between wild- o
type (+/+) (n = 9) and

homozygous (—/—) (h = 9) mice after cold-in-
duced injury to the left cerebral hemisphere. Val-
ues are mean = SEM. Asterisk indicates P < 0.05
compared to edema index (20) of wild-type con-
trols, with the use of the Tukey test.

of hippocampal neurons among individuals
likely reflect differences in the occurrence
of spontaneous seizures. No obvious mor-
phological abnormalities were found else-
where (19). These results suggest that
GLT-1 is essential for maintaining low ex-
tracellular glutamate concentrations and for
preventing glutamate neurotoxicity. Be-
cause GLT-1 is distributed uniformly
throughout the hippocampus, another
mechanism that is responsible for the selec-
tive neuronal vulnerability in the hip-
pocampal CA1l field of mutant mice may
exist, a proposal that can be readily inves-
tigated in GLT-1 mutant mice.

Experimental induction of injury and isch-
emia is associated with a large, almost imme-
diate increase in extracellular glutamate con-
centration (20). To examine the role of
GLT-1 in the pathogenesis of acute brain
injury, we compared edema development after
cold-induced injury in wild-type and mutant
mice (21, 22). The homozygous mutant mice
were significantly more susceptible to edema
than were the wild-type mice (Fig. 5A). Ede-
ma was 68% greater in the homozygous mu-
tant mice than in the wild-type mice (P <
0.05), and edema size was visibly larger in
mutant mice than wild-type mice (Fig. 5B).
Our results suggest that GLT-1 normally con-
tributes to the prevention of acute glutamate
neurotoxicity after trauma.

Our results indicate that GLT-1 contrib-
utes to the maintenance of extracellular
glutamate concentrations at low levels.
Without its action, glutamate levels rise
enough to cause epilepsy and cell death.
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Osmotic Activation of the HOG MAPK Pathway
via Ste11p MAPKKK: Scaffold Role
of Pbs2p MAPKK

Francesc Posas and Haruo Saito*

Exposure of the yeast Saccharomyces cerevisiae to high extracellular osmolarity induces
the SIin1p-Ypdip-Sskip two-component osmosensor to activate a mitogen-activated
protein (MAP) kinase cascade composed of the Ssk2p and Ssk22p MAP kinase kinase
kinases (MAPKKKs), the Pbs2p MAPKK, and the Hog1p MAPK. A second osmosensor,
Sho1p, also activated Pbs2p and Hog1p, but did so through the Ste11p MAPKKK.
Although Ste11p also participates in the mating pheromone-responsive MAPK cascade,
there was no detectable cross talk between these two pathways. The MAPKK Pbs2p
bound to the Sho1p osmosensor, the MAPKKK Ste11p, and the MAPK Hog1p. Thus,

Pbs2p may serve as a scaffold protein.

MAP kinase cascades are common eukaryot-
ic signaling modules that consist of a MAP
kinase (MAPK), a MAPK kinase (MAPKK),
and a MAPKK kinase (MAPKKK) (I1). In S.
cerevisiae, two independent osmosensors regu-
late the common HOG (high osmolarity glyc-
erol response) signal transduction pathway,
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which includes the Pbs2p MAPKK and
Hoglp MAPK (2-5). The Slnlp-Ypdlp-
Ssklp two-component osmosensor uses a
multistep phosphorelay mechanism to regu-
late the redundant MAPKKKs Ssk2p and
Ssk22p (2, 3, 6, 7). Activated Ssk2p or Ssk22p
then phosphorylates and activates the Pbs2p
MAPKK. The second osmosensor, Sholp, con-
tains four transmembrane segments and a
COQH-terminal cytoplasmic region with an
SRC homology 3 (SH3) domain (3). The in-
teraction between an NH,-terminal proline-
rich motif in Pbs2p and the Sholp SH3
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