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Epilepsy and Exacerbation of Brain Injury in 
Mice Lacking the Glutamate Transporter GLT-1 
Kohichi Tanaka,* Kei Watase, Toshiya Manabe, Keiko Yamada, 
Masahiko Watanabe, Katsunobu Takahashi, Hisayuki Iwama, 

Toru Nishikawa, Nobutsune Ichihara, Tateki Kikuchi, 
Shigeru Okuyama, Naoya Kawashima, Seiji Hori, 

Misato Takimoto, Keiji Wada 

Extracellular levels of the excitatory neurotransmitter glutamate in the nervous system 
are maintained by transporters that actively remove glutamate from the extracellular 
space. Homozygous mice deficient in GLT-1, a widely distributed astrocytic glutamate 
transporter, show lethal spontaneous seizures and increased susceptibility to acute 
cortical injury. These effects can be attributed to elevated levels of residual glutamate 
in the brains of these mice. 

T h e  extracellular concentration of the  ex- 
citatory neurotransmitter L-glutamate in 
the  mammalian central nervous system 
must be kept low to ensure a high signal- 
to-noise ratio during synaptic activation 
and to Drevent neuronal damage from ex- - 
cessive activation of glutamate receptors 
(1) .  This control is achieved by high-affin- 
ity, Nai-dependent glutamate transporters 
in the  plasma membrane of neurons and 
surrounding glial cells (2) .  T h e  failure or 
reversal of these transporters may contrib- 
ute to cellular damage in stroke, trauma, 
Alzheimer's disease. amvotrovhic lateral , L 

sclerosis, and Huntington's disease (3). Four 
subtypes of glutamate transporters have 
been defined by differences in  sequence, 
pharmacology, tissue distribution, and 
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channel-like properties: GLAST,  GLT-1, 
EAAC1,  and EAAT4 (4). E A A C l  and 
EAAT4 are selectively localized to  neurons, 
whereas GLT-1 and GLAST are astroelial - 
transporters (5). However, the  roles of glu- 
tamate transporter subtypes in  synaptic 
transmission and neurotoxicity are not  
known because subtype-specific inhibitors 
are not  available. W e  therefore generated 
mice that lack GLT-1, using homologous 
recombination. 

T o  disrupt the  mouse gene encoding 
GLT-1 in E l 4  embryonic stem (ES) cells by 
homologous recombination, we constructed 
a targeting vector in  which the  exon encod- 
ing the  putative third transmembrane seg- 
ment  was replaced with the  neomycin re- 
sistance gene (Fig. 1A) .  Four targeted 
clones were identified from 144 G418- and 
gancyclovir (GANC)-resistant clones by 
Southern ( D N A )  blotting with 5'-flanking 
and 3'-flanking probes (Fig. 1A) .  Two mu- 
tant clones were separately injected into 
C5iBLI6J blastocysts to  produce chimeric 
animals. Heterozygous animals were identi- 
fied bv Southern blotting and were bred 
with each other to  obtain homozygous an- 
imals, which showed the  proper structure of 
the  GLT-1 gene by Southern analysis (Fig. 
1B). Northern ( R N A )  blotting showed that 
brains from homozv~ous mutant mice con- , - 
tain a hybridizable transcript that is similar 
in size to  the  wild-type GLT-1 m R N A  (Fig. 
I C ) .  Reverse transcription-polymerase 
chain reaction experiments, followed by 
Southern blot analysis with a n  exon-specif- 
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Fig. 1. Targeted disrup 
tion of the mouse gent 
encoding GLT-1. (A) Ho 
mologous recombina I",, 

tion resulted in replace- c - 
nw 

ment of the 0.8-kb frag- 
ment from the GLT-1 K v N - 
gene, including 224 bp ,* " P ~  

of exon 4 with the neo- 
mycin resistance gene 
(neo). Closed boxes E2 through E4, exons 2 
through 4; tk, herpes simplex virus thymidine ki- 
nase gene. Restrict~on sites are as follows: Apa I 
(A), Eco RV (RV), Kpn I (K), and Not I (N). The 5'- 
and 3'-flanking probes generated the 9.8-kb Kpn 
I-Apa I and the 5.0-kb Eco RV fragments from the 
wild-type GLT-1 gene, respectively, and the 15.2- 
kb Kpn I-Apa I and the 9.1 -kb Eco RV fragments 
from the properly disrupted gene, respectively. (6) 
Southern blot analvses of senomic DNA from ta~ls 

,pe allele 

probe I 

I Targeti 
LJ. I -  

ng vector - * 7- 

9.4- ra - 5- w 
ted allele 

p,uuv 6.6- 

of the wild-type (+I+), h~erozygous (+/-), and 
homozygous mutant mice (-/-). Kpn I-Apa I-digested DNAs and Eco the parasagittal brain sections of the wild-type [(E) through (H)] and mutant [(I) 
RV-digested DNAs were hybridized with the 5'-flanking probe (left) and through (L)] mice at the second postnatal month with oligonucleotide probes 
3'-flanking probe (right), respectively. (C) Northem blot analysis of cerebral specif~c for the GLAST [(E) and (I)], GLT-1 [(F) and (J)], EAACl [(G) and (K)], 
RNAs from the wild-type (+I+). heterorygous (+/-), and homozygous mu- and EAAT4 [(H) and (Li] mRNAs. Arrows ind~cate the hippocampal CAI 
tant (-I-) mice. (D) Protein immunoblot analysis of cerebral membrane region in the mutant, which lacks the GLAST and EAACl mRNAs. Scale 
fractions with antibody to GLT-1. (E through L) In situ hybridization analysis of bars, 2 mm. 

ic probe corresponding to the disrupted re- 
gion, indicated that the transcript derived 
from the mutated allele lacks exon 4 (6). 
However, protein immunoblot analysis (Fig. 
1D) detected no GLT- 1 protein in the brains 
of the mutant mice (7). By in situ hybridiza- 
tion with oligonucleotide probes, expression 
of the four glutamate transporter subtypes 
was examined in the brains of wild-type and 
mutant mice (Fig. 1, E to L) (8). Hybridiza- 
tion signals for GLT-1 disappeared com- 
pletely from the mutant brain (Fig. 1J). The 
levels of the other elutamate transuorter sub- 
type mRNAs weri  not appreciably affected 
bv mutation. Glutamate u~ take  in cortical 
crude synaptosomes of mutant mice was de- 
creased to 5.8% of that in synaptosomes from 
wild-type mice [mean + SEM (three animals 
per group) for the Michaelis constant (K,) 
(at micromolar concentration) and the max- 
imum uptake velocity (V,,) (in picomoles 
per minute per milligram of protein) are, 
respectively: wild type, 46.1 + 4.2, 
19,716.2 + 7280.2; mutant, 22.1 + 0.46, 

1139.0 2 432.11, which suggests that GLT-1 
is responsible for the greatest proportion of 
cerebral glutamate transport (9). 

Mice heterozveous for GLT-1 were in- ," 
distinguishable from wild-type mice. Ho- 
mozygous mice were born from heterozy- 
gous crosses at the frequency predicted by 
Mendelian ratios (n = 312): 24.4% wild 
type, 50.6% heterozygous, and 25.0% ho- 
mozygous. The body weight and general 
appearance of the homozygous mice were 
normal at birth, but homozygous mice 
gained weight more slowly than did wild- 
type mice (Fig. 2A) and tended to die pre- 
maturely (50.0% survival after 6 weeks) 
(Fig. 2B). Deaths were not preceded by any 
noticeable health ~roblems. Postmortem 
analyses revealed no evidence of hemor- 
rhage, infarction, or ischemia that might be 
associated with cardiovascular failure or 
stroke and no gross abnormalities in skeletal 
muscles or visceral organs. However, con- 
tinuous videotape monitoring of small 
groups of mice revealed the occurrence of 

spontaneous epileptic seizures with behav- 
ioral patterns similar to those of N-methyl- 
D-aspartate (NMDA)-induced seizures 
( lo),  characterized by explosive running 
followed by maintained opisthotonus and 
straub tail (Fig. 2C). In most cases, these 
mice died within a few minutes of seizure 
onset. A subset of mutant mice quickly 
recovered and resumed apparently normal 
behavior but developed additional seizures 
and died later. 

To confirm profound hyperexcitability 
in mutant mice. we com~ared the electro- 
encephalogram (EEG) patterns of wild-type 
and homozveous mutant mice treated with , - 
the convulsant agent pentylenetetrazole 
(PTZ), a y-aminobutyric acid receptor an- 
tagonist (1 1). After a single injection of 
PTZ at a subconvulsive dose of 30 mg per 
kilogram of body weight (30 mgJcg), high- 
voltage sharp wave bursts unaccompanied 
by behavioral changes were detected in mu- 
tant mice, whereas no epileptiform dis- 
charges were observed in wild-type mice 

- ,  - ,  - 01 . . . , . . . . - . . . 
0 20 40 60 80 0 2  4 6 8 1 0 1 2 1 4  

Postnatal days Postnatal weeks (n =78) mice. (C) Opisthotonus-like posture in a GLT-1 mutant mouse at 
Fig. 2. Phenotypes of GLT-1 mutant mice. (A) Body weight (mean t SEM) of postnatal day 35 (P35). (D) EEG of wild-type (+/+) and homozygous (-I-) 
homozygous (-/-) (n = 50) and wild-type (+/+) (n = 58) mice. (6) Percentage mice after PTZ administration. The high-voltage sharp wave bursts are 
of postnatal survival of wild-type (+/+) (n = 76) and homozygous (-/-) underlined. 
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Fig. 3. Kinetics of glutamatergic synaptic re- A 
sponses and estimation of an increase in gluta- 
mate concentrations in the synaptic cleft in hip- 
pocampal slices of GLT-1 mutant mice. (A) The Gzlv- =& 
non-NMDA receptor-mediated EPSC in the wild-  LAP^ 
type mouse recorded from a CAI pyramidal cell 
with whole-cell patch-clamp techniques at a hold- c 
ing membrane potential of -90 mV. The time con- 
stant of the decaying phase of the current in this G L T - l p x i  Dp 
cell was 12.4 ms. All the traces were an average of -1- 
10 consecutive responses. (B) The NMDA recep- 20 rns 
tor-mediated EPSC in the wild-type mouse (con- 
trol). The decay time constant was 50.1 ms. Ap- 
plication of 400 pM L-AP5, a low-affinity NMDA receptor antagonist, caused a large inhibition of the 
current (L-AP5). (C) The non-NMDA receptor-mediated EPSC in the mutant mouse. The decay time 
constant was 11.7 ms. (D) The NMDA receptor-mediated EPSC in the mutant mouse (control). The 
decay time constant was 49.2 ms. 

(Fig. 2D). GLT-1 maps to the central re- 
gion of mouse chromosome 2 (1 2), near the 
region of the quantitative trait locus EL-2 of 
the mouse epilepsy strain (1 3). 

To study the role of GLT-1 at central 
glutamatergic synapses, we performed elec- 
trophysiological analysis in the hippocam- 
pal CAI pyramidal neurons (14). In CAI 
hippocampal pyramidal neurons, stimula- 
tion of the afferent fibers led to the gener- 
ation of an excitatory postsynaptic current 
(EPSC) that contained both the slow 
NMDA and fast non-NMDA components. 
No significant difference in the time course 
of non-NMDA receptor-mediated EPSCs 
recorded at -90 mV was found between the 
wild-type [decay time constant, 11.5 + 0.8 
ms (mean ? SEM); n = 81 and mutant 
(12.5 2 0.6 ms; n = 7) slices (Fig. 3, A and 
C). There was no clear difference in the 
decay time course of NMDA receptor-me- 
diated EPSCs between the wild-type 
(55.7 ? 1.9 ms; n = 11) and mutant mice 
(51.4 2 2.2 rns; n = 9) (Fig. 3, B and D). 
These results indicate that GLT-1 does not 
determine the decay rate of EPSCs in the 
hippocampus and are consistent with the 
observation that glutamate transporter 
blockers have no effect on the decay of 
EPSCs in the hippocampus (1 5). 

We next estimated the peak concentra- 
tion and time course of free glutamate in 
the synaptic cleft by analyzing the displace- 

ment of a rapidly dissociating NMDA re- 
ceptor antagonist, L-2-amino-5-phosphono- 
pentanoic acid (L-AP5), from NMDA re- 
ceptors during synaptic transmission (1 6). 
The inhibition of NMDA EPSCs by 400 
p,M L-AP5 in the mutant slices (26.1 + 
4.6%; n = 6) was significantly less than in 
the wild-type slices (53.0 + 4.0%; n = 9) 
(P < 0.001), implying that the peak con- 
centration of synaptically released gluta- 
mate is increased in mutant mice and that 
glutamate remains elevated in the synaptic 
cleft for longer periods in mutant mice (Fig. 
3, B and D). These results suggest that 
GLT-1 is an important determinant of the 
clearance of free glutamate from the synap- 
tic cleft. A recent study suggests that the 
uptake rate of GLT-1 is significantly slower 
than the predicted time course of synapti- 
cally released glutamate (17). Thus, it is 
likely that binding to the transporter rather 
than uptake per se removes glutamate from 
the cleft. Our observation could be ac- 
counted for by the absence of glutamate 
binding sites. 

Because excessive synaptic glutamate 
leads to neuronal degeneration, we per- 
formed systematic histological analysis of 
the entire brain (1 8). We observed selective 
neuronal degeneration in the hippocampal 
CAI field in 7 of 22 homozygous mutant 
mice aged 4 to 8 weeks (Fig. 4, A through 
D). Differences in the selective destruction 

Fig. 4. Selective neuronal degeneration in the hippocampal CAI of the GLT-1 mutant mouse (C and D) 
at P56 as compared to that in the wild-type mouse (A and B). (A through D) Nissl staining. Selective 
neuronal loss and residual nuclear debris in the hippocampal CAI pyramidal layer of the mutant mouse 
are shown [arrows in (C)]. DG, dentate gyrus. Scale bar in (A), 100 pm; in (B), 10 pm. 
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Fig. 5. Wild-type and 
mutant mouse brains 

Vasogenic edema of 

mozygous (-/-) litter- 
mates after cold-in- 

comparison of edema 
formation between wild- +/+ -,- 
type (+/+) (n = 9) and 
homozygous (-/-) (n = 9) mice after cold-in- 
duced injury to the left cerebral hemisphere. Val- 
ues are mean ? SEM. Asterisk indicates P < 0.05 
compared to edema index (20) of wild-type con- 
trols, with the use of the Tukey test. 

of hippocampal neurons among individuals 
likely reflect differences in the occurrence 
of sDontaneous seizures. No obvious mor- 
phological abnormalities were found else- 
where (19). These results suggest that 
GLT-1 is essential for maintaining low ex- 
tracellular glutamate concentrations and for 
preventing glutamate neurotoxicity. Be- 
cause GLT-1 is distributed uniformly 
throughout the hippocampus, another 
mechanism that is responsible for the selec- 
tive neuronal vulnerabilitv in the  hi^- 
pocampal CAI field of mutant mice may 
exist, a proposal that can be readily inves- 
tigated in GLT-1 mutant mice. 

Ex~erimental induction of iniurv and isch- , , 
emia is associated with a large, almost imme- 
diate increase in extracellular glutamate con- 
centration (20). To examine the role of 
GLT-1 in the pathogenesis of acute brain 
injury, we compared edema development after 
cold-induced injury in wild-type and mutant 
mice (21, 22). The homozygous mutant mice 
were significantly more susceptible to edema 
than were the wild-type mice (Fig. 5A). Ede- 
ma was 68% greater in the homozygous mu- 
tant mice than in the wild-type mice (P < 
0.05), and edema size was visibly larger in 
mutant mice than wild-type mice (Fig. 5B). 
Our results suggest that GLT-1 normally con- 
tributes to the prevention of acute glutamate 
neurotoxicity after trauma. 

Our results indicate that GLT-1 contrib- 
utes to the maintenance of extracellular 
glutamate concentrations at low levels. 
Without its action, glutamate levels rise 
enough to cause epilepsy and cell death. 
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Osmotic Activation of the HOG MAPK Pathway 
via Stel I p MAPKKK: Scaffold Role 

of Pbs2p MAPKK 
Francesc Posas and Haruo Saito* 

Exposure of the yeast Saccharomyces cerevisiae to high extracellular osmolarity induces 
the Slnl p-Ypdl p-Sskl p two-component osmosensor to activate a mitogen-activated 
protein (MAP) kinase cascade composed of the Ssk2p and Ssk22p MAP kinase kinase 
kinases (MAPKKKs), the Pbs2p MAPKK, and the Hogl p MAPK. A second osmosensor, 
Shol p, also activated Pbs2p and Hogl p, but did so through the Stel 1 p MAPKKK. 
Although Stel 1 p also participates in the mating pheromone-responsive MAPK cascade, 
there was no detectable cross talk between these two pathways. The MAPKK Pbs2p 
bound to the Shol p osmosensor, the MAPKKK Stel 1 p, and the MAPK Hogl p. Thus, 
Pbs2p may serve as a scaffold protein. 

MAP kinase cascades are common eukaryot- 
ic signaling modules that consist of a MAP 
kinase (MAPK), a MAPK kinase (MAPKK), 
and a MAPKK kinase (MAPKKK) (1 ). In S. 
cerevisim, two independent osmosensors regu- 
late the common HOG (high osmolarity glyc- 
erol response) signal transduction pathway, 
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which includes the Pbs2p MAPKK and 
Hoglp MAPK (2-5). The Slnlp-Ypdlp- 
Ssklp two-component osmosensor uses a 
multistep phosphorelay mechanism to regu- 
late the redundant MAPKKKs Ssk2p and 
Ssk22p (2, 3, 6,  7). Activated Ssk2p or Ssk22p 
then phosphorylates and activates the Pbs2p 
MAPKK. The second osmosensor, Sholp, con- 
tains four transmembrane segments and a 
COOH-terminal cytoplasmic region with an 
SRC homology 3 (SH3) domain (3). The in- 
teraction between an NH2-terminal proline- 
rich motif in Pbs2p and the Sholp SH3 
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