
IC1 and eject an  1 atotn back to  the  gas 
phase (Cl-selective abstraction) despite the  
much larger exothermicity for the  fortna- 
tion of Si-Cl(s) + I than Si-I(s) + C1. 

T h e  reorientation by the  surface ~vould 
also explain the  higher abstraction ratio for 
IC1 over that for Br,. A n  end-on geometry 
has been calculated to favor abstraction 
over dissociation for halogens o n  sernicon- 
ductor and metal surfaces hecause this ge- 
ometry places the  terminal halogen far from 
the  surface in  a n  optimal posltion for ah- 
straction ( 2 ,  1 1 ). Although molecules in 
the  molecular beam usually have a nearly 
side-on or tilted orientation, reorientation 
hy the  surface should place a large fraction 
of the  1C1 into an  end-on geometry and 
thus increase ahstraction. 

'We propose that the  orientation of IC1 
into I-end-first configuration results frotn 
the  higher polarizability of 1 compared to C1 
and the  asymmetric molecular bonding as- 
sociated with IC1. Because C1 is tnuch tnore 
electronegative than 1, the  honding oz and 
T,,, orhitals predotninantly consist of C1 3p 
orbitals, whereas the  antibonding a:::: and 
T 1.) ':' orbitals predominantly consist of I 5p 
orhitals. T h e  highest occupied molecular 
orbital ( H O M O )  is mainly concentrated a t  
the  I atom of an  IC1 molecule; thus, the  I 
end is both more polarizahle and tnore re- 
active than the  C1 end. This difference was 
confirmed by Hartree-Fock tnolecular orbit- 
al calculations tnade using the  SpartanPlus 
program (1 2) which show that the  effective 
radius of the + + - o r b i t a l  wave function is 
70°/6 greater 011 the  I atom than o n  the  C1 
atom. Conversely, there is only 19% differ- 
ence in the  effective radius of the  probahil- 
ity density of the  entire valence shell be- 
tween the  I and the  C1 atotns. Therefore, 
we suggest that when a n  IC1 tnolecule ap- 
proaches a Si adatonl o n  the  S i ( l l 1 ) - ( 7 ~  
7) surface, the  interaction of a n  IC1 T ~ , , ~ '  

antibond (HOAllO) with the  partially filled 
Si dangling bond results in greater attrac- 
tion to  the  1 end than the  C1 end of the  IC1 
tnolecule. This selection is the  driving force 
for the  I-end-first orientation of IC1 before 
reaction and ultimately causes chemical se- 
lectivity for the  reaction of IC1 with the  
S i ( l l 1 ) - ( 7 x  7) surface. This satne tnolecu- 
lar-orbital argument was used to explain the  
chemical selectivity of the  D + 1C1 -. Dl + 
C1 gas-phase reaction (1 ). Reorientation of 
N O  (13) by A g ( l l 1 )  or P t ( l l 1 )  and of HZ 
hy W(100)  (14) or Pd( l99)  (15) is denoted 
as rotational steering and has been observed 
in  theoretical simulations. Therefore, the  
reorientation of molecules by surfaces may 
be a general phenomenon and is prohahly 
the  dynamic mechanistn responsible for this 
example of atotnically selective chemisorp- 
tion, the  selective abstraction of I from 1C1 
hy S i ( l l 1 ) - ( 7 x 7 ) .  
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Differential Effects of Cytolytic T Cell Subsets 
on lntracellular Infection 

Steffen Stenger, Richard J. Mazzaccaro, Koichi Uyemura, 
Sungae Cho, Peter F. Barnes, Jean-Pierre Rosat, 

Alessandro Sette, Michael B. Brenner, Steven A. Porcelli, 
Barry R. Bloom, Robert L. Modlin* 

In analyzing mechanisms of protection against intracellular infections: a series of human 
CDI -restricted T cell lines of two distinct phenotypes were derived. Both CD4-CD8- 
(double-negative) T cells and CD8- T cells efficiently lysed macrophages infected with 
Mycobacterium tuberculosis. The cytotoxicity of CD4-CD8 T cells was mediated by 
Fas-FasL interaction and had no effect on the viability of the mycobacteria. The CD8' 
T cells lysed infected macrophages by a Fas-independent, granule-dependent mech- 
anism that resulted in killing of bacteria. These data indicate that two phenotypically 
distinct subsets of human cytolytic T lymphocytes use different mechanisms to kill 
infected cells and contribute in different ways to host defense against intracellular 
infection. 

Effective immunity to intracellular bacte- 
rial infection often reiluires the  lysis of in- 
fected cells as well as killing of the  invading 

u u 

pathogen. A possible role for cytolytic T 
lymphocytes (CTLs) in protection against 
M. tuberculosis has been suggested by exper- 
iments in mice bearing a disruption in the  
P,-microglohulin gene. These mice are un- 
ahle to express tnajor histocompatibility 
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coinalex IAllHC) class I or class I-like 
tnolecules or to  generate CTLs and  were 
shown to be highly suscestible to  infec- 

u ,  

t ion (1 ). Despite numerous studies of 
C D 4 +  T cell responses and cytokine pro- 
duction in  tuberculosis, there remain only 
a few reports of C D 8 +  CTLs tha t  recog- 
nize mycobacterial antigens (2 ) .  This  par- 
adox led us to  investigate whether other  
antigen-presentillg systems could be essen- 
tial for generation of M. tuberculosis-spe- 
cific CTLs. C D 1  is a n  AllHC-like surface 
tnolecule with a uniaue ability to  nrocess , 

and  present nonpeptide antigens to  T 
cells, including tnycobacterial lipids (3 ,  4 ) .  
W e  exatnined whether CD1-restricted 
CTLs have the  capacity to  recognize and  
lyse LM/i, tuberculosis-infected macrophages. 

CDl-restricted T cells were derived 
from patients ~ v i t h  active tuberculosis as 
well as healthy donors (5). Al l  of these T 
cell lines recognized M. tuberculosis lipid 
and  lipoglycan antigens in  a CD1b-re- 
strlcted manner  as assessed by antlgen- 
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specific T cell proliferation and interfer- 
on-y (IFN-y) secretion. T cells were ei- 
ther CD4-CD8- (double negative, DN) 
or CD8+ and expressed ap T cell recep- 
tors, consistent with our previous findings 
(3, 4, 6). We investigated whether CD1- 
restricted T cells recognized antigen-pre- 
senting cells (APCs) harboring live myco- 
bacteria. CD1+ macrophages were infect- 
ed with virulent M. tuberculosis with 90% 
efficiency, such that there were approxi- 
mately three bacteria per macrophage (7). 
All DN and CD8+ T cell lines examined 
efficiently lysed infected macrophages in a 
dose-dependent manner (Fig. 1A). The 
restriction and specificity were shown by 
the inhibition of CTL-mediated lysis of 
infected targets and release of IFN-y by 
antibody to CDlb  (Fig. 1B). CTLs did not 
lyse uninfected CD1+ rnacrophages. 

CTLs lyse targets by two pathways, the 
exocytosis of granules containing perforin 
and granzymes and the interaction of Fas 
ligand on the CTL with Fas on the target 
cell (8). The mechanisms operate inde- 
pendently: For example, mice with a dis- 
rupted perforin gene retain the ability to 
exert Fas-FasL-dependent T cell lysis, but 
the biological roles and contribution to 
immunity of each remains unresolved. Be- 
cause M. tuberculosis-infected macro- 
phages were killed by two phenotypic sub- 

CD8.TX 
A 100-1 A Live M.Tb 

A Live M.Tb + anti-CDl b 

Medium alone 

Live M.Tb 

+ anti-CDlc 

0 20 40 60 80 
Specific lysis (%) 

Fig. 1. Cytotoxicity of CD1 -restricted CTLs 
against rnacrophages infected with virulent M. tu- 
berculosis. The cytotoxic response of (A) CD8+ 
line(CD8.TX)and (6) DN line (DN.PT, E:T = 10:l) 
against infected rnacrophages was measured in a 
51Cr-release assay in the presence or absence of 
blocking antibodies to CD1 (anti-CDI) (24). The 
results shown are representative of one out of 
three independent experiments, each performed 
in triplicate. Error bars correspond to the SEM. 

sets of cytotoxic T cells, we sought to 
clarify the mechanisms of lysis, specifically 
the relative importance of killing by Fas- 
FasL interaction and by the degranulation 
mechanism. The cytotoxicity mediated by 
two DN, CD1-restricted CTL lines was 
markedly inhibited by blocking antibodies 
to Fas or to FasL (Fig. 2A). In contrast, the 
cytotoxicity of two CD8+ CD1-restricted 
CTL lines was not affected by blocking of 
Fas or FasL (Fig. 2B). We also determined 

. u  , 

the contribution of the granule-dependent 
pathway to the target cell lysis. Strontium 
ions (SrZ+), which release histamine from 
mast cells by inducing granular degranula- 
tion, also induce degranulation of cytotox- 
ic lymphocytes (9) ,  thereby transiently in- 
hibiting lytic activity. This effect was used 
to determine the extent to which the 
granule-dependent pathway participated 
in killing M. tuberculosis-infected macro- 
~ h a e e s  (1 0). Preincubation with Sr2+ se- 
iectively inhibited the cytotoxicity of the 
CD8+, but not DN, CD1-restricted CTLs 
(Fig. 2, A and B). Granzyme A, charac- 
teristic of cytotoxic granules, was detected 
in Srz+-induced Supernatants of CD8+, 
but not DN, T cells (Fig. 2C). The capac- 
ity of lymphocytes to proliferate and re- 
lease IFN-y upon antigen-specific activa- 
tion was not affected by treatment with 

Fig. 2 Distinct mecha- 
nisms of cytotoxicity of DN 
and CD8+ CTLs. Cyto- 
toxicity of (A) DN (DN.PB 
and DN.OR) or (B) CD8+ 
(CDB.TX and CD8.1) 
CTLs against antigen- 
pulsed rnacrophages was 
determined in the pres- 
ence or absence of block- 
ing antibodies to FasL (5 
pg/rnl) or Fas (1 p,g/ml) or 
after initial treatment of the 
CTLs with SF'+ (25). The 
E:T ratio was 10: 1. The 
result shown is represen- 
tative of three indeaen- 

SrZ+ (I 1 ). The differential ability of anti- 
bodies to Fas-FasL or of Sr2+ to inhibit 
CTL activity was not dependent on the 
level of killing (Fig. 2, A and B). 

A critical component of lymphocyte cy- 
totoxic granules is perforin, which polymer- 
izes on the target cell membrane after anti- 
gen activation and induces a nonselective 
pore that may be responsible for target cell 
lysis (1 2). Using reverse transcriptase-poly- 
merase chain reaction (RT-PCR), we de- 
tected induction of perforin mRNA in all 
three CD8+ CTL lines examined, but not 
in three DN CTL lines (Fig. 2D). In con- 
trast, mRNA for FasL was detected in stim- 
ulated DN CTL lines but not in the CD8+ 
lines. 

The existence of two populations of 
human CTLs, differentiated by phenotype 
and by mechanism of cytotoxicity, was 
confirmed in a larger group of CTLs. Five 
DN CTL lines independently derived from 
different donors, all CD1-restricted, killed 
targets by the Fas-FasL pathway, with lit- 
tle contribution from the granule-depen- 
dent mechanism (Fig. 3). Conversely, the 
cytotoxicity of three CD8+ CDl-restrict- 
ed CTL lines was granule-dependent. In 
addition, the killing by two classical 
CD8+ MHC class I-restricted CTL lines 
specific for influenza peptide was almost 

A DN.PB 
Medium alone 

+ anti-FasL 
+ anti-Fas 
+strontium 

0 20 40 60 
Specific lysis (%) 

6 CD8.TX 
Medium alone 

+ anti-FasL 
+ anti-Fas 
+ strontium 

0 20 40 60 
Specific lysis (%) 

A 

DN.OR 
Medium alone 

+ anti-FasL 
+ anti-Fas 
+ strontium 

0 20 40 60 
Specific lysls (%) 

CD8.1 
Medium alone 

+ anti-FasL 
+ anti-Fas 
+ strontium 

0 20 40 60 
Specific lysis (%) 

b dent experiments, ~rror CDa,, 
bars correspond to the CDa,2 
SD. (C) Release of BLT- CD8.FpI 
esterase by CDl -restrict- DN.OR 
ed CTLs induced by treat- DN.PB 
ment with Sr2+ (26). The o kc 0.1 0.2 0.3 0.4 
data shown are represen- BLT-esterase (A4,,*) 

tative of three indepen- 
dent experiments, each performed in triplicate. Data are given as the D DN CDB+ -- 
absorbance at 405 nm t SD. (D) Expression of FasL and perforin 1 2 3  4 5 6  
mRNA by DN and CD8+ CTLs. CTLs (2 x 1 05) were stimulated with 
antigen for 12 hours, and total RNA was isolated as described (27). CD3 
cDNA was synthesized and standardized to yield similar amounts of 
CD36 PCR product within the linear range of amplification. cDNA 
specific for FasL (28) and perforin (29) was amplified by PCR and FasL 
visualized by autoradiography (28). Lane 1 : DN.OR; lane 2: DNl ; 
lane 3: DN.LDN4; lane 4: CD8.1; lane 5: CD8.2; and lane 6: 
CD8.FPl. Perforin 
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c o m p l e t e l y  d e p e n d e n t  o n  c y t o t o s l c  g r a m  

ules ( 1 3 ) .  

T h e  c lues t ion  r e m a i n s  as t o  1%-hy t h e  

i m m ~ ~ n e  resaonse h a s  t ~ v o  v i r t u a l l v  i n d e -  

p e n d e n t  m o d e s  o f  c y t o t o s i c  responses. L \ - -  

sis o f  i n f e c t e d  i n a c r o ~ h a o e s  \\-111 release 
& ,  

~ n t r a c e l l ~ ~ l a r  bac te r ia ,  t h u s  r e d u c i n g  t h e  

reservo i r  o f  i n f e c t e d  ce l l%.  T h e  b a c t e r i a  

w i l l  b e  d ispersed a n d  t a k e n  up a t  l o \ \  

i l n ~ l t i p l i c i t i e s  o f  i n f e c t i o n  ( h l O I s )  by a c t i -  

v a t e d  l n f i l t r a t i i l g  macrophages,  n - h i c h  c a n  

kill t h e m  (14). I11 a d d i t i o n ,  t h e  process o f  

l y s i n g  t h e  i n f e c t e d  ta rge t  c e l l  m a y  d i r e c t l y  

o r  indirectly resu l t  in t h e  d c a t h  o f  t h e  

bac te r ia .  T o  d e t e r i n i n e  \ \ -herher  C D 1 - r e -  

s t r i c t e d  T c e l l  ac t i \ . a t i on  resul ts  In k i l l i n o  

o f  i n t r a c e l l u l a r  m y c o b a c t c r i a ,  \ve c o c u l -  

t u r e d  CTL l ines  \\it11 L!i. tliberculosis-111- 

fectecl CD1- cel ls  a n d  measured  b a c t e r i a l  

v i a b i l i t y  a f te r  18 h o u r s .  \Sillereas f o u r  DN, 
C D 1 - r e s t r i c t e d  T c e l l  l i nes  h a d  n o  e t t c c t  

o n  t h e  ~ n ~ m b e r  o f  colony-forming u n i t s  

( C F U s )  o f  v i r u l e n t  hi. t t tberc~i losis, I.otl1 

CD8- C D 1 - r e s t r i c t e d  T c e l l  l i n e s  e x a m -  

i n e d  r e d i ~ c e d  t h e  n u m b e r  o f  C F U s  b y  35 t o  

59% (F ig .  4) .  In a d i l l t i o n ,  t w o  h i l m a n  

i n f l u e n z a  pcp t idc -spec i f i c  CD8+ CTL 
l i n e s  t h a t  cause lysis so le l y  b y  a g ranu le -  

d e p e n ~ l e l l t  1nec11a111s~n rc i lucec l  t h e  num- 
b e r  o f  v i a b l e  m y c o b a c t e r i a  1.y 1ysi11g in- 
f e c t e d  macroohaecs  t h a t  h a d  b e e n  s l m u l -  L, 

t aneous ly  p u l s e d  nit11 i n f l u e n z a  p e p t i d e .  

? I l though t h e  pe rcen tage  r e c l u c t i o n  o f  

C F C s  a-as ' i v i t h ln  a n  o r d e r  o f  m a g n i t u d e ,  

L!i. tztbercztlosis i n f e c t i o n  in v i v o  is s l o ~  

a n d  r r o t r a c t e d .  a n i l  t h e  t i m e  o f  in v i t r o  

assay \\-as o n l y  18 hours ,  so t h a t  a ~LL~ILI- 

1ati1.e a n t i m i c r o b i a l  e f fec t  m e d i a t e d  b v  

these T cel ls  o v e r  t i m e  coulc l  h a v e  a p r o -  

f o u n i l  e f fec t  o n  t h e  n u l n b e r  o f  b a c i l l i  dur- 
i n g  t h e  course o f  i n f e c t ~ o n .  

These  d a t a  a n d  a r e c e n t  s tudy o f  a mu- 
sine l n o i i e l  (15) suggest t h a t  t h e  tn70  de-  

f i n e d  mechan isms  o f  c;-totoxici ty are asso- 

c l a t e d  w l t h  c l i s t ~ n c t  p h e n o t y p i c  T c e l l  sub- 

sets, y e t  h a v e  d i f fe ren t ia l  effects o n  m i c r o -  

b i a l  immunity. C o n s i s t e n t  ~ v i t h  t h e  f l n d l ~ ~ g s  

t h a t  Fas-FasL i l l t e rac t ions  appear t o  b e  m o s t  

r e l e v a n t  t o  lysis o f  cel ls o f  t h e  i i n l n ~ l n e  

system itself ,  this m e c h a n i s m  m a y  f ~ m c t i o n  

pr i inar i l>-  111 i m m u n e  r e g u l a t i o n  in v ~ v o ,  

particularly in e l l l l ~ i n a t i n g  antigen-express- 

i n g  i i P C s ,  the reby  d o w n - r e g u l a t i n g  im- 
m u n e - m e d i a t e d  tissue i n j u r y  ( 1 6 ) .  In c o n -  

trast, t h e  a b i l i t y  o f  CD8+ C T L s  b o t h  t o  lyse 

in fecteLl  ce l ls  by t h e  g r a ~ ~ i ~ l e - d e p e ~ ~ d c n t  

m e c h a n i s m  a n d  t o  kill in t race l lu la r  1 4 .  tti- 
berc~tlosis suggests t h a t  t h e y  m a y  h a y e  a 

specia l  r o l e  in resistance t o  i n f e c t i o ~ l s  

pathogens.  T h e  f i n d i n g  in gene-d isrupted 

mouse  inodels  t h a t  p e r f o r i n  1s i t se l f  n o t  

essential f o r  r e s o l u t i o n  o f  i nycobac te r ia l  in- 
f e c t i o n  in viva ( 1 7 )  raises t h e  poss ib i l i t y  

t h a t  t h e  a n t i m i c r o b i a l  a c t i v i t y  m a y  b e  in- 
d e p e n d e n t  o f  t h e  l y t i c  process o r  t h a t  t h e r e  

m a y  b e  a d d i t i o n a l  i ned la to rs  in t h e  c y t o t o x -  

~c granules, s u c h  as granzymes, defensins, o r  

g ranu lys in  (18 ) .  D e l i n e a t i o n  o f  t h e  m e c h a -  

n i s l n  whereby  C D 1 - r e s t r i c t e d  C T L s  kill 111- 
t race l lu la r  l nycobac te r ia  m a y  p r o v i d e  usefu l  

i ns igh ts  l n t o  mechan isms  w h e r e b y  o t h e r  

types o f  C T L s  c o n t r i b ~ l t e  t o  p r o t e c t i o n  

against  microbial pathogens.  
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i he archaeological record cannot resolve 
whether domestic dogs originated from a 
single wolf population or arose from multi­
ple populations at different times (1, 2). 
However, circumstantial evidence suggests 
that dogs may have diverse origins (3). Dur­
ing most of the late Pleistocene, humans 
and wolves coexisted over a wide geograph­
ic area (1), providing ample opportunity for 
independent domestication events and 
continued genetic exchange between 
wolves and dogs. The extreme phenotypic 
diversity of dogs, even during the early 
stages of domestication (1, 3, 4), also sug­
gests a varied genetic heritage. Conse­
quently, the genetic diversity of dogs may 
have been enriched by multiple founding 
events, possibly followed by occasional in-
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terbreeding with wild wolf populations. 
We sequenced portions of the mito­

chondrial DNA of wolves and domestic 
dogs. Initially, 261 base pairs (bp) of the 
left domain of the mitochondrial control 
region (5) were sequenced from 140 dogs 
representing 67 breeds and five cross­
breeds and 162 wolves representing 27 
populations from throughout Europe, 
Asia, and North America (Fig. 1) (6). 
Because all wild species of the genus Canis 
can interbreed (7) and thus are potential 
ancestors of the domestic dog, five coyotes 
{Canis latrans) and two golden, two black-
backed, and eight Simien jackals (C. au­
reus, C. mesomelas, and C. simensis, re­
spectively) were also sequenced. 

The control region of wolves and dogs 
was highly polymorphic (Fig. 1). We 
found 27 wolf haplotypes that differed on 
average by 5.31 ± 0.11 (±SE) substitu­
tions (2.10 ± 0.04%), with a maximum of 
10 substitutions (3.95%). The distribution 
of wolf haplotypes demonstrated geo­
graphic specificity, with most localities 
containing haplotypes unique to a partic­
ular region (Fig. 1). Four haplotypes (W2, 
W7, W14, and W22) had a widespread 
distribution. In dogs, 26 haplotypes were 
found. Only haplotype D6 also occurred in 
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Mitochondrial DNA control region sequences were analyzed from 162 wolves at 27 
localities worldwide and from 140 domestic dogs representing 67 breeds. Sequences 
from both dogs and wolves showed considerable diversity and supported the hypothesis 
that wolves were the ancestors of dogs. Most dog sequences belonged to a divergent 
monophyletic clade sharing no sequences with wolves. The sequence divergence within 
this clade suggested that dogs originated more than 100,000 years before the present. 
Associations of dog haplotypes with other wolf lineages indicated episodes of admixture 
between wolves and dogs. Repeated genetic exchange between dog and wolf popu­
lations may have been an important source of variation for artificial selection. 
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