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A Similarity Between Viral Defense and Gene 
Silencing in Plants 

Frank Ratcliff, Bryan D. Harrison, David C. Baulcombe* 

Gene silencing in plants, in which an endogenous gene is suppressed by introduction 
of a related transgene, has been used for crop improvement. Observations that viruses 
are potentially both initiators and targets of gene silencing suggested that this phe- 
nomenon may be related to natural defense against viruses. Supporting this idea, it was 
found that nepovirus infection of nontransgenic plants induces a resistance mechanism 
that is similar to transgene-induced gene silencing. 

I t  has been shown that gene silencing ( 1 )  
and virus resistance are related phenomena 
in transgenic plants. Transgenes that are 
derived from viral cDNA and are able to 
induce gene silencing may also suppress the 
acculnulation of viruses that are similar in 
nucleotide sequence (2 ) .  In addition, non- 
viral transgenes are able to suppress virus 
infection if the vlrus is modified by inser- 
tion of the transgene sequence into the 
viral genome (3). 

Viruses are also able to silence host 
genes. For example, in Nicotiana benthami- 
ana inoculated with modified tobacco mo- 
saic tobarnovirus (TMV) (4) or potato X 
votexvirus (PVX) (5) that carried host- 
related inserts, there was suppression of 
genes holnologous to the inserts. Viruses 
u u 

can also induce silencing of transgenes that 
are similar in sequence to the inoculated 
virus (6) .  Early in the course of infection, 
expression of the transgene was unaffected 
by the virus, and the normal viral symptoms 
were produced. However, later on, in the 
upper leaves that developed after the vlrus 
had spread systemically, gene silencing af- 
fected both the transgene and the homolo- 
gous virus. Thus, leaves that developed later 
contained lower concentrations of the 
transgene RNA, were free of the virus, and 
were resistant to secondary infection by the 
virus. The plants exhibiting this response 
were said to have "recovered" (6) .  

This type of recovery from virus disease 
is not confined to transgenic plants. In 
nepov~rus-infected hrzcotiana sp., there are 
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severe viral symptoms on the inoculated 
and first systemic leaves. However, the up- 
per leaves that develop after systemic ~nfec- 
tion are svmutom-free and contain a lower , L 

concentration of virus than do the symp- 
tomatic leaves (7). For example, N .  cleve- 
landii inoculated with tomato black ring 
nepovirus (strain W22) initially shows 
symptoms and later recovers (Fig. 1). After 
secondarv reinoculation of W22 to the re- 
covered leaves, there was no additional ac- 
cumulation of W22 RNA above that result- 
ing from the primary inoculation (Fig. 2)  
and the plants remained symptom-free. In 
contrast, plants previously unexposed to 
W22 produced a high concentration of 
W22 RNA (Fig. 2)  and sho~ved disease 
symptoms. The resistance of recovered 
leaves to subsequent viral challenge sug- 
gests the existence of a resistance mecha- 
nism that restricts or prevents infection by 
the challenge virus. 

In similar experiments, the recovered 
leaves of W22-infected N ,  clevelandii were 
inoculated 1~11th viruses that were progres- 
sively less related to W22. These analyses 
confirmed that the resistance associated 
with recovery was specific to strains that 
were related In eenomic seauence to the " 
recovery-inducing virus (8). In upper leaves 
challenee-inoculated with the tomato black 

'7 

ring nepovirus (strain BUK) there was de- 
tectable acculnulat~on of the BUK RNA 
but at a substantially lower concentration 
in the recovered plants than in plants that 
were initially mock-inoculated (Fig. 2). 
There was also vart~al vrotection from dis- 
ease induction by secondary Infection with 
BUK (8). However, vrilnarv infection with 
W22 provided no protection against sec- 
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Of the viruses used for secondary infection, 
BUK is the most closely related to W22, 
having 68% nucleotide identity in RNA2 
(9). Tomato ringspot nepovirus RNAl and 
PVX RNA have no long stretches of se- 
quence identity with W22 RNA (9). 
Therefore, resistance in the recovered 
leaves is specific for viruses that have RNA 

Fig. 1. Recovery in a N. 
clevelandii plant infected 
with tomato black ring nepo- 
virus strain W22. A 4-week- 
old seedling of N. clevelandii 
was inoculated with tomato 
black ring nepovirus strain 
W22 (76) (A) or was mock- 
inoculated (8). Arrows indi- 
cate the primary (1) and sec- 
ondary (2) inoculated leaves. 
After a further 3 weeks, the I 
leaves were removed from 
the plants and are displayed 
from left to right in order of 
decreasing age on the plant. 

sequences that are similar to the virus used 
for primary inoculation. 

In principle, this strain-specific resis- 
tance mechanism could be targeted against 
proteins encoded by the challenge viruses. 
Alternatively the target could be RNA, as is 
the case when viruses are initiators or tar- 
gets of transgene silencing (2-6, 10). To 

Fig. 2. Viral RNA accumulation in plants exhibiting Primary W22 W22 
recovery induced by nepoviral infection. Primary 
inoculation of 4-week-old seedlings of N. cleve- SBcO"dary - + + 
landii was with either tomato black ring nepovirus 
strain W22 or water (-), as described for Fig. 1. 
After a further 3 weeks, an upper leaf of these 

W22 

plants was challenge-inoculated with water (-) or 
virus (+). The secondary inoculum, indicated in BUK 
the left column, was tomato black ring nepo- 
virus strain W22 (W22), tomato black ring nebo- 
virus strain BUK (Bum, tomato ringspot nepovirus 
strain Wisconsin (TomRSV), or-* (73. Ten 
days after challenge inoculation, the total RNA of WX 
the challenge-inoculated leaves was extracted 
(separate samples from three plants per treatment were taken). The accumulation of the challenge- 
inoculated RNAs was determined by Northern analysis with the use of probes specific for the 
challenge-inoculated virus (78). The figure illustrates the part of the phosphorimage of the Northem 
analysis showing the genomic RNAs of the challenge-inoculated viruses. 

distinguish between these alternative 
mechanisms, we tested the accumulation of 
a modified PVX construct (PVX.W22) in 
leaves of N. ckvelandii exhibiting recovery 
from a primary W22 infection. PVX.W22 
contained an insert of W22 sequence (Fig. 
3A) at a site that did not disrupt viral 
replication or spread through the infected 
plant. The proteins required for replication 
and spread of PVX.W22 would be the same 
as those required by wild-type PVX. If the 
recovery was targeted against proteins, then 
accumulation of PVX.W22 would be unaf- 
fected by prior infection with W22. Con- 
versely, if the recovery was targeted against 
the RNA of PVX.W22, then accumulation 
of PVX.W22 virus would be severely limit- 
ed in recovered leaves of plants previously 
infected by W22. 

Northern (RNA) analysis showed that 
accumulation of the PVX.W22 RNA in the 
recovered leaves (Fig. 3B) was below the 
limits of detection. In contrast, there was a 
high concentration of PVX.W22 RNA after 
inoculation to the upper leaves of mock- 
inoculated plants. Thus, the outcome of 
this experiment indicates that RNA is the 
target of the nepoviral recovery mechanism. 
The suppression of PVX.W22 in the recov- 
ered leaves was specific to the construct 
carrying a W22 insert, because viruses lack- 
ing sequence related to W22 accumulated 
to a high concentration after inoculation to 
both the recovered tissue and the upper 
leaves of the mock-inoculated plants: both 
wild-type PVX and PVX.GFP proliferated 
unhindered (Fig. 3B). The insert in 
PVX.GFP encodes the jellyfish green fluo- 
rescent protein (GFP) (1 1). PVX with an 
insert of TMV sequence was either not 
suppressed or was only slightly suppressed 
when inoculated to symptomatic systemi- 
cally infected leaves of TMV-infected 
plants in which recovery did not occur (1 2). 
Thus, sequence-specific suppression of PVX 
constructs was characteristic of plants ex- 

3. Accumulation of m o d i  A 
RN4s in plants exhibiting 

B 
Plimary - W22 

virus-induced recovery. (A) 
atic diagrams of the W22 Secondary PVXaFP PVXGFP WXW22 PVX. 

, PVX RNA, and the WX vector 
struct canying a fragment of the , 

cDNA (PVX.W22) (19). The di- 
1- I d  l n l l w i  PVX 

is not drawn to scale, but the 
la a R M  l - 

. Ten days later, the total RNA of these I 
withtheuseofaPVX-soecificwobe(1W. 
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hibiting the nepovirus recovery phenotype 
and was not a general property of virus- 
infected tissue. 

Through this analysis of nepovirus- 
induced recovery, we have demonstrated 
that a natural virus-induced effect and 
transgene-induced gene silencing are simi- 
lar. Both phenomena are potentially virus- 
inducible and are associated with strain- 
specific virus resistance that is targeted 
against RNA. O n  the basis of these siinilar- 
ities, we propose that the same RNA-based 
mechanism underlies both phenomena. 
Gene silencing may occur when the plant 
erroneously perceives a transgene or its 
R N A  product to be part of a virus. Trans- 
gene-induced gene silencing is normally dis- 
played by only a small proportion of lines 
produced with any one construct (6, 13). It 
may be possible to increase the incidence of 
gene silencing by ensuring that transgene 
transcripts have features, such as double- 
strandedness, that resemble replicative 
forms of viral RNA. Conversely, if it is 
necessary to evade gene silencing to achieve 
very high levels of transgene expression, it 
may be appropriate to produce transgenes 
specihing transcripts in which features re- 
sembling viral R N A  are removed. 

Why do nepoviruses and members of a 
few other virus groups elicit such pro- 
nounced recovery? One explanation, at 
least for nepoviruses, may follow from an 
earlier suggestion that there is an associa- 
tion between recovery and the potential of 
the virus to be transmitted throigh the seed 
of the infected plant (14). Normall); trans- 
mission through seed does not take place 
because viruses are excluded from the mer- 
isteln and surrounding area of the nlant in 
which gametes are produced. When seed 
transmission does take place, it is probably 
because this exclusion from the meristem 
has been overcome. Perhans recoverv is ini- 
tiated when the 11epovir;s penetraies the 
meristem. This uossible association of mer- 
istems, nepoviral recovery, and gene silenc- 
ing suggests that there may be an increased 
likelihood of gene silencing when trans- 
genes are exuressed in meristems. - 

Recovery is not the only resistance phe- 
nomenon in plants that is specifically tar- 
geted against the inducing virus and close 
relatives. "Green islands" and mosaics that 
are induced by non-seed transmitted viruses 
are examples of localized areas of virus-spe- 
cific resistance in infected plants (15). The  
relatedness of these other resistance respons- 
es and nepoviral recovery could indicate 
that gene silencing is a manifestation of a 
ubiquitous defense in plants against viruses. 

Note added in proof A recent report (21 ) 
also describes a recoverv uhenomenon in , L 

virus-infected plants that has similarity to 
gene silencing. 
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Substantial Genetic Influence on Cognitive 
Abilities in Twins 80 or More Years Old 
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Nancy L. Pedersen, Frank Ahern, Stephen A. Petrill, 

Robert Plomin* 

General and specific cognitive abilities were studied in intact Swedish same-sex twin 
pairs 80 or more years old for whom neither twin had major cognitive, sensory, or motor 
impairment. Resemblance for 110 identical twin pairs significantly exceeded resem- 
blance for 130 fraternal same-sex twin pairs for all abilities. Maximum-likelihood model- 
fitting estimates of heritability were 62 percent for general cognitive ability, 55 percent 
for verbal ability, 32 percent for spatial ability, 62 percent for speed of processing, and 
52 percent for memory. There was also evidence for the significant influence of idio- 
syncratic experience as the environmental component that most determines individual 
differences in cognitive abilities late in life. 

Individuals aged 80 and older, whose prev- range of individuality (2-4). A particularly 
alence is increasing at nearly twice the rate crucial aspect of quality of life in the elderly 
of the rest of the population in developed is cognitive filnctioning, which includes 
countries throughout the world (1 ), vary general and specific cognitive abilities. 
immensely in health and functional capa- General cognitive ability, which represents 
bilities. Little is kno~vn about the genetic that which diverse cognitive abilities have 
and environmental origins of this wide in common, is frecluently measured by a 
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