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Genetic Feminization of Pheromones and Its D melanowter (10, 11) 1s the gene trans- 
former ([la), n~h lch  controls the sexual di- BehavioralConsequencesin DrosophilaMales m o l ~ ~ l l s m o f p h e r o m o n e s ~ ~ , ~ ~ ) a s , a , o ~  
its larger influence o n  somatlc sex determi- 

Jean-Fran~ois Ferveur," Fabrice Savarit, Cahir J. OIKane, nation. W h e n  the fetninizing transgene 
Gilles Sureau, Ralph J. Greenspan,? Jean-Marc Jallon GAS-tra, made arlth the female cDNA of , the . 

tra gene, 1s expressed in certain regions of the  
Pheromones are intraspecific chemical signals important for mate attraction and dis- male braln, the male exhibits a Gsexual ori- 
crimination. In the fruit fly Drosophila melanogaster, hydrocarbons on the cuticular entation (13, 14).  T h e  tra gene also affects 
surface of the animal are sexually dimorphic in both their occurrence and their effects: downstream sex-determination genes like 
Female-specific molecules stimulate male sexual excitation, whereas the predominant frziitless and doublesex, which in turn control 
male-specific molecule tends to inhibit male excitation. Complete feminization of the the sex pheromones or the inale sexual ori- 
pheromone mixture produced by males was induced by targeted expression of the entation (15).  Here, Ive expressed the CAS- 
transformer gene in adult oenocytes (subcuticular abdominal cells) or by ubiquitous tra transgene at different stages of develop- 
expression duri'ng early imaginal life. The resulting flies generally exhibited male het- ment and in a particular group of abdominal 
erosexual orientation but elicited homosexual courtship from other males. cells, ~71th the aim of producing a male fly 

with an  unaltered sexual orlentation, but 

I n  tnany a n ~ m a l  species, sex- and species- 
suecific bouauets of odors elicit subtle 
changes in potential sexual partners, which 
in  turn may respond by appropriate behav- 
ior (1) .  In  the fruit fly Drosophila, the  ste- 
reotyped courtship behavior exhibited by 
tnale flies is induced largely by chetnical 
cues, or uheromones, uroduced bv his mate 
(2 ) .  These pheromones-the most abun- 
dant  hydrocarbon tnolecules present o n  the  
fly cutlcle (3)-are sensed principally by 
contact and are thought to ulav a crucial 

u A ,  

role in sexual isolation, tending to  prevent 
intersuecific mating (4, 5). 

w 

In  D. melanogaster, pheromones are strik- 
ingly sexually dimorphic (6)  and have very 
different effects on male courtship behavior 
(7, 8) (Table 1).  Female flies produce dienes 
(two double bonds) with 27 and 29 carbons 
[cis,cis-7,11-heptacosadiene (7,11HD) and 
cls,cis-7,ll-nonacosadiene (7,1 1ND)I. A few 
tens of nanograms of both dienes together 
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can elicit vigorous inale precopulatory be- 
havior ( 7 , s ) .  Male flies synthesize monoenes 
(one double bond) with 23 and 25 carbons 
[cis-7-tricosene (7-T) and cls-7-pentacosene 
(7-P)]. 7-T can inhibit dose-dependent tnale 
excitation (8,  9) ,  whereas 7-P stimulates 
tnales of some strains (4,  7, 8 ) .  

O n e  of the  few genetic factors known to 
control the production of sex pheromones in 

with a female pheromonal profile. 
T o  assess the  critical period d u r ~ n g  

which the  tra gene product regulates pher- 
omone expression, are transiently expressed 
L:AS-tra throughout the  organlstn at differ- 
ent  develop~nental stages by crossing it t o  a 
line in which GAL4 IS fused to  a heat shocic 
70 promoter (16).  T h e  tra gene, fused to  a 
promoter containing a GAL4-dependent 
upstream actlvatlon sequence (LTAS), Ivas 
therefore expressed with the  same temporal 

Fig. 1. Product~on of sex 
pheromones ln 4-day- 80] o "b7.mcnoenes. UAS-fra %7, i i -d~enes,  U A S . I ~  

o 467-moncenes UAS-IacZ m5b7 11-dienes UAS-IecZ 
old male f e s  as a func- 
t~on of temporal actlva- 3 
t~on of UAS-tra or of $ 60- 
UAS-IacZ A angle pulse $ 
of heat shock (37%) was = 
appl~ed for 2 hours at g 
varous tmes (or 6 hours 0 

before pupar~at~on) Each 40- 

data po~nt represents the 2 
mean percentage (I-SE) 5 
of 7-monoenes (%7-T + 5 
0/07-P) and of 7 11 denes g 20- 

(0/0711-HD+00711-ND) 3 
for 20t-isp-GAL4 UAS-tra 5 
lnd~v~duals and for 10 
hso-GAL4 UAS-IacZ n-  0- 
d~v~duals Control non- 0 6 8 12 

Embryo 
heat-shocked hsp-GAL4 

Larva Pupa 
Ecloslon 

UAS-tra and tisp-GAL4 Tlme of heat shock administration (days) 
UAS-IacZ males y~elded 
52 8 2 1 5 and 57 5 '- 2 300 7-monoenes and 0 9 0 5 and 0% 7 1 1  d~enes respect~vely Values were 
measured as  In (271 
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Table 1. Effects of UAS-tra expression on 4-day-old males For the production of pheromones the percentage of 7-trcosene (0/07-7 7-pentacosene (%7-P) 
and 7,11 -denes (O107 11 -heptacosadene and %7,1 I-nonacosad~ene pooled) were calculated from the total quantltes of cutcuar hydrocarbons (ZHc). 
7 1 I -Dlenes were pooled because ther respectve contrbutons were approximately the same In a strans Percentages (mean ? SE) were obtaned by gas 
chromatography of extracts from 20 ndlvdua f e s  (21) Amounts of CIS-vacceny acetate (cVA) were estmated from ZHc (+-) male-llke, (+) reduced (0) 
absence For behavlora tests, PGAL4 UAS-tra males were examlned both a s  objects with courtlng males of the 555-GAL4 stran and as subjects wlth 
Canton-S (Cs) male or wlth shlbre (shl) female objects (34) A fles were 4 days old and the target fles were decapitated before the 10-mln experment 
Decapltatlon prevents reciprocal courtshlp and allows measurement of un~drectona behavor The percentage of courtlng males only Includes males that 
courted for more than 20 s The courtshp Index IS the mean fractlon of tlme (cSE In parentheses) spent actlvely courtng by a rides (wlng vlbratlon, llcklng 
and attempt to copulate) (8), wlth at least 20 trlals per straln 

Sex pheromones 

Court 
lnd~~ce  courtshlp of control 

males (555-GAL4) Males Females 

7-T 7-P 7.1 1 -denes 2 Hc cVA 
("/.I ( % ) ("/.I (ng) (level) (n) % Index lndex 

Wd-type female 
(Cs stran) 

Wd-type male 
(Cs stran) 

UAS-tra male 

A-tra 

B-tra 

C-tra 

D-tra 

E - tra 

F-tra 

G-tra 

Control 
40 6 1788 0 (20) 
(2 1 )  (1 19) 
0 1423 (+ +) (25) 

(92) 
0 1491 (+ +) (25) 

(70) 
Oenocfle-expressed GAL4-tra males 

44 0 1863 0 (20) 
(2 3) (1 86) 

25.6 1328 0 (25) 
(1 8) (69) 

40 5 1468 (+I (20) 
(1 8) (94) 

40 5 1463 (+) (20) 
(1 2) 

37 2 
(80) 

1402 ( -  -1 (20) 
(1 2) (46) 
Nonoenocfle-expressed GAL4-tra males 
0 1974 ( -  -1 (25) 

(1 56) 
0 2206 (+) (20) 

(230) 

pattern as G,Q4 (17).  Heat shock induced 
ubiquitous tra expression at different devel- 
opmental stages frotn etnbryo to 4-day-old 
adults (Fig. 1) .  T h e  extent of fe~llinization of 
pheromone production ( the  replacement of 
7-monoenes by 7,l l-dienes) reached a peak 
n ~ h e n  GAS-tra expression was induced by a 
single heat shock between 12 and 48 hours 
of adult life. N o  vheromonol fetninization 
was observed with control males expressing 
GAS-lacZ under the  same heat shock con- 
ditions. This result suggests that the gene 
product or products being synthesized in 
these flies, after a 2-hour heat shock, have a 
sufficiently long-lasting effect to enable the 
production of female pheromones up to 4 
days later and confirms that early imaginal 
life is the critical period during which sexu- 
ally d i m o i ~ h i c  hydrocarbons replace irnma- 
ture hydrocarbons o n  the  fly cuticle (13).  

Mosaic studies have localized the  origin - 
of pherornonal sexual dinlorphism in  the  fly 
abdomen (19).  T o  precisely map the  cells 
that control the  production of sex phero- 
mones, are generated PGAL4 CAS-tra 
strains in  which males show different pat- 
terns of regional fetninization in  their abdo- 

men. T h e  PGAL4 system uses enhancer 
detection to express ;he GAL4 transcrip- 
tional activator in different cellular patterns 
(1 6 ,  20).  T h e  feminizing UAS-tra gene is 
therefore expressed with the  satne tissue 
specificity as GAL4 (14) .  

Ou t  of 50 PGAL4 GAS-tra lines originally 
screened, we identified five lines (A through 
E) in which male flies exhibited a female 
pattern of pheromones (Table 1).  These re- 
gionally feminized flies, chro~nosomally XI7, 
produced high amounts of female dienes 
( 7 , l l H D  and 7 , l l N D )  and low amounts of 
male monoenes (7-T and 7-P). T h e  CAS-tra 
expression was responsible for the ferniniza- 
tion of sex pherotnones because neither 
P G M 4  GAS-lacZ males nor PGAL4 UAS- 
tra females from these five PGAL4 strains 
showed anv substantial variation of their 
male or feAale pheromonal pattern (21 ). 

W e  examined the  vattern of GAL4 ex- 
pression in the  five feminized strains ( A  
through E) t o  seek a relation between their 

u 

expression patterns and pheromonal femini- 
zation. T h e  G,Q4 expression patterns were 
revealed by a cross to  a UAS-lac2 reporter 
strain (Fig. 2). T h e  adult expression patterns 

were of varying complexity, but they over- 
lapped in  two cell types: the  oenocytes and 
the  midgut (22).  Oenocytes are subcuticular 
abdominal cells found in segmentally re- 
~ e a t e d  roars that form crescent-shaned 
strands o n  the  tergltes and stnall clusters o n  
the sternites (23).  Oenocites were the onlv 
cells able to cllange the  p;oduction of pher: 
omones because males of the  other PGA4L4 
UAS-tra strains that were not feminized for 
their pheromones (Table 1 )  often showed 
strong expression in the  midgut but not in 
the  adult oenocytes (Fig. 2, F and G). A 
correlation between oenocyte expression 
and vheromone feminization was confirmed 
by analysis of a larger number of PG'Q4 
lines (24).  Together n ~ i t h  previous studies of 
such unrelated insects as the  desert locust 
(2.5) and the  mosquito Czilicoi'des nzibeculosus 
(26),  this result suggests that pheromones 
tnav be svnthesized in  the  oenocvtes of tnanv 
insect species (27) .  

Oenocytes have multiple endocrine 
f ~ ~ n c t i o n s ,  including the  regulation of ecdy- 
steroids (28) ,  one of which, 20-OH-ecdy- 
sone, controls a n  elongase required for the  
synthesis of 23 and 27 C hydrocarbons in  
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Fig. 2. Photomicro- 
graphs showing l a d  ex- 
pression pattem (blue) in 
the abdominal oenmytes 
of vatious PGAL4 strains. 
All flies are Cday-old 
males. (A) Sagittal frozen 
section of the thorax and 
abdomen, and (6 and D 
to G) horizontal frozen 
sections (10 pm) in the 
abdomen of PGAL4 
UAS-lad males. (C, H, 
and I) Dorsal views of the 
abdominal cuticule of 
PGAL4 UAS-lacZ males 
(C and H) and PGAL4 
UAS-tra; UAS-lac2 
males (I). (Ato C) Strain C; 
(D) strain 6; (E) strain E; 
(F) strain F; (G) strain G; 
and (H and I) strain D. Ar- 
rowheads (A and E) indi- 
cate the oenmytes. 
Bars, 50 pm (D, E, F, and 
G; H and I have the same 
magnification). 

Musca domestica (29). In D. melanogaster, 
according to the biosynthetic scheme pro- 
posed by Jallon (6), an elongase, perhaps 
coupled with a desaturase, would be suffi- 
cient to replace 7-monoenes by 7,ll-dienes. 
In the mutant Drosophila ecdysonekss 1- 
females, 7,ll-dienes are to a large extent 
replaced by 7-monoenes (30). 

Drosophila adult oenocytes show a slight 
sexual dimorphism (23, 31), but this does 
not seem to underlie the pheromonal dif- 
ference between the sexes. To visualize di- 
rectly whether the ectopic feminization of 
the oenocytes by the tra gene could have 
changed their sex-specific pattem, we si- 
multaneously expressed both UAS-tra and 
UAS-lac2 transgenes (32). Resulting XY 
flies (PGAL4 UAS-tra UAS-lacZ) did not 
differ in their segmental pattem of lac2 
expression, as compared with PGAL4 UAS- 
lacZ males (Fig. 2), nor in their production 
of sex pheromone, as compared with XY 
PGAL4 UAS-tra flies (33). 

The sex pheromones produced by the 
feminized XY flies from the five strains (A 
through E) functioned as female phero- 
mones and elicited a more vigorous court- 
ship response in control males than in 
males from F-tra, G-tra, and control strains 
(34). The variation in these male courtship 
responses may reflect variability in control- 
ling signals other than female pheromones 
such as the chemicals 7-T, 7-P, and cis- 

vaccenyl-acetate (cVA) (35) and visual 
cues like the abdominal and genital mor- 
phology of target PGAL4 UAS-tra males, 
the phenotypes of which seem to be inde- 
pendent of oenocyte feminization (36). 

When tested as subjects against control 
male and female flies, feminized males from 
C-tra, D-tra, and E-tra strains retained a 
strong and typical male heterosexual behav- 
ior (Table I), suggesting no relation be- 
tween the feminization of their hydrocar- 
bons and their sexual orientation. However, 
A- and B-tra males exhibited some bisexual 
behavior, possibly because they were femi- 
nized in the calyces of their mushroom bod- 
ies (strain A) and in a dorso-medial subset 
of their antenna1 lobes (strains A and B). 
However, these two brain structures, which 
function in mate recognition (1 3, 14), were 
not feminized in the other GAL4-tra strains 
(strains C through G), showing that they 
are not required for feminization of the 
pheromonal profile. 

Our analysis shows that in D. melano- 
gaster, two aspects of individual sexual iden- 
tity-the perception of others and the pre- 
sentation of self to others-are under sepa- 
rate genetic and anatomical control. Homo- 
sexual courtship may take place either 
because of factors in the courter's brain (13, 
14) or because of factors in the courted fly's 
pheromonal profile. The interactive aspect 
of courtship and the complex nature of 

sexual identity in an animal as relatively 
simple as the fruitfly indicate that simplistic 
explanations of the genetic bases of sexual- 
ity are unlikely to be true. 
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A Similarity Between Viral Defense and Gene 
Silencing in Plants 

Frank Ratcliff, Bryan D. Harrison, David C. Baulcombe* 

Gene silencing in plants, in which an endogenous gene is suppressed by introduction 
of a related transgene, has been used for crop improvement. Observations that viruses 
are potentially both initiators and targets of gene silencing suggested that this phe- 
nomenon may be related to natural defense against viruses. Supporting this idea, it was 
found that nepovirus infection of nontransgenic plants induces a resistance mechanism 
that is similar to transgene-induced gene silencing. 

I t  has been shown that gene silencing ( 1 )  
and virus resistance are related phenomena 
in transgenic plants. Transgenes that are 
derived from viral cDNA and are able to 
induce gene silencing may also suppress the 
acculnulation of viruses that are similar in 
nucleotide sequence (2 ) .  In addition, non- 
viral transgenes are able to suppress virus 
infection if the virus is modified by inser- 
tion of the transgene sequence into the 
viral genome (3). 

Viruses are also able to silence host 
genes. For example, in Nicotiana benthami- 
ana inoculated with modified tobacco mo- 
saic tobarnovirus (TMV) (4) or potato X 
votexvirus (PVX) (5) that carried host- 
related inserts, there was suppression of 
genes holnologous to the inserts. Viruses 
u u 

can also induce silencing of transgenes that 
are similar in sequence to the inoculated 
virus (6) .  Early in the course of infection, 
expression of the transgene was unaffected 
by the virus, and the normal viral symptoms 
were produced. However, later on, in the 
upper leaves that developed after the virus 
had spread systemically, gene silencing af- 
fected both the transgene and the homolo- 
gous virus. Thus, leaves that developed later 
contained lower concentrations of the 
transgene RNA, were free of the virus, and 
were resistant to secondary infection by the 
virus. The plants exhibiting this response 
were said to have "recovered" (6) .  

This type of recovery from virus disease 
is not confined to transgenic plants. In 
nepovirus-infected hrzcotiana sp., there are 
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severe viral symptoms on the inoculated 
and first systemic leaves. However, the up- 
per leaves that develop after systemic infec- 
tion are svmutom-free and contain a lower , L 

concentration of virus than do the symp- 
tomatic leaves (7). For example, N .  cleve- 
landii inoculated with tomato black ring 
nepovirus (strain W22) initially shows 
symptoms and later recovers (Fig. 1). After 
secondarv reinoculation of W22 to the re- 
covered leaves, there was no additional ac- 
cumulation of W22 RNA above that result- 
ing from the primary inoculation (Fig. 2)  
and the plants remained symptom-free. In 
contrast, plants previously unexposed to 
W22 produced a high concentration of 
W22 RNA (Fig. 2)  and sho~ved disease 
symptoms. The resistance of recovered 
leaves to subsequent viral challenge sug- 
gests the existence of a resistance mecha- 
nism that restricts or prevents infection by 
the challenge virus. 

In similar experiments, the recovered 
leaves of W22-infected N ,  clevelandii were 
inoculated with viruses that were progres- 
sively less related to W22. These analyses 
confirmed that the resistance associated 
with recovery was specific to strains that 
were related in eenomic seauence to the " 
recovery-inducing virus (8). In upper leaves 
challenee-inoculated with the tomato black 

'7 

ring nepovirus (strain BUK) there was de- 
tectable acculnulation of the BUK RNA 
but at a substantially lower concentration 
in the recovered plants than in plants that 
were initially mock-inoculated (Fig. 2). 
There was also vartial vrotection from dis- 
ease induction by secondary infection with 
BUK (8). However, vrilnarv infection with 
W22 provided no protection against sec- 
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