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Orientation Selectivity in Pinwheel Centers 
in Cat Striate Cortex 

Pedro E. Maldonado,*'r lmke Godecke," Charles M. Gray, 
Tobias Bonhoeffer 

In primary visual cortex of higher mammals neurons are grouped according to their 
orientation preference, forming "pinwheels" around "orientation centers." Although the 
general structure of orientation maps is largely resolved, the microscopic arrangement 
of neuronal response properties in the orientation centers has remained elusive. The 
tetrode technique, enabling multiple single-unit recordings, in combination with intrinsic 
signal imaging was used to reveal the fine-grain structure of orientation maps in these 
locations. The results show that orientation centers represent locations where orientation 
columns converge containing normal, sharply tuned neurons of different orientation 
preference lying in close proximity. 

In recent years, optical nnaging has en- 
abled the investigation of neuronal re- 
sponse propestles over large areas of the 
visual cortex in \ri\ro (1-3). These experi- 
ments have revealed that orientation selec- 
tivity is not organized in parallel bands but 
in iso-orientation domains that are ar- 
ranged radially in a pinnheel-like fashion 
(4). Optical imaging studies have shown 
that the magnitude of the orientation signal 
in the centers of these pinwheels is low (1 ,  
3,  4) ,  suggesting that the population of 
neurons in these locations might mainly 
consist of unoriented cells. However, be- 

cause of their relatively low spatial resolu- 
tion, imaging studies cannot reliably deter- 
mine the physiological characteristics of in- 
dividual neurons in these regions. We 11al.e 
prelriously reported that in some locations 
of cat striate cortex, adjacent cells display 
large differences in orientation preference 
(5). Because this is an alternative explana- 
tion for the low magnitude of the optical 
orientation signal, we conjectured that 
these regions may correspond to the pin- 
wheel centers in the orientation preference 
map. 

In five halothane-anestheti-ed adult 
cats, we used optical imaging based on in- 

P. E. Maldonado, Max-Planck-nst~tute for Psych~at~!, trillsic signals to record the orientation 
Am Kopferspitz 18A, 821 52 Munchen-Marinsred. Ger- 
many, and The Center for Neurosc~ence, Un~verslty of preference InaPs of visual areas 17 and 18 
Caforna. Dajis. CA 9561 6. USA. 16). The animals were stimulated with drift- ~, 
I. Godecke and T. Bonhoeffer, Ma*-Panck-nsttute for jng wave of different orien- 
psych at^!, Am Kopfersptz 18A. 821 52 Munchen-Mar- 
t nsr~ed, Germany. tations. The image of the visual cortical 
C. M. Gray. The Center for Neuroscence and the Secton surface obtained in one experiment along 
of Neuroboogy, Physoogy and Beha\ior. Unversty of corresponding (canglen and 
Caforn'a, Davs, CA 9561 6, USA. maps is shown in Fig. 1 (7). After obtaining - - 
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9), to record from pinwheel centers or iso- 
orientation domains while presenting the 
same drifting square wave gratings used 
in the imaging session. Subsequently, we 
extracted and sorted the individual 
spike trains from the multi-unit recording, 
computed peri-stimulus time histograms 
(PSTHs) and tuning curves for al l  cells (9, 
lo), and compared the response properties 

for neurons within and outside of orienta- 
t ion centers. 

In 24 penetrations in pinwheel centers, 
we recorded at 77 sites and extracted a total 
of 345 single neurons (Table 1). As a con- 
trol, we performed 20 penetrations in iso- 
orientation domains ( I  I )  yielding 81 sites 
and a total of 348 neurons. By statistically 
comparing the firing rate before and during 

stimulus presentation, we found 8% of the 
cells in pinwheel centers and 7% of the cells 
in iso-orientation domains to be unrespon- 
sive to the presented stimuli. Fourteen per- 
cent of the cells in pinwheel centers and 
17% in iso-orientation domains were not 
tuned (1 2). For the remaining tuned cells, 
tuning bandwidths and firing rates were de- 
termined and were indistinguishable be- 

Fig. 1. Orientation map obtained by intrinsic signal imaging. (A) Vascular 
pattem of the cortical surface. This area contains portions of visual areas 17 
and 18. The circles in the panels show the locations of the tetrode penetrations. 
These penetrations were aimed at orientation centers or at iso-orientation 
domains [see (B)]. The two asterisks indicate the locations of the recordings 
shown in Fig. 2. Scale bar, 1 mm. (B) Color-coded orientation preference 
("angle") map for the cortical region shown in (A). The responses to four 
stimulus orientations were summed vectorially, and the preferred orientation 
for every point is color-coded as shown on the right. This angle map reveals the 

typical organization of o rb  l~ation preference maps II ILU pinwheel centers 
(where different orientation preferences converge; for example, left asterisk) 
and iso-orientation domains (where neurons of similar orientation preference 
are grouped together; for example, right asterisk). (C) Polar map, combining 
the color code for preferred orientation with a brightness code representing the 
strength of orientation tuning [for details see (3, 4, 1611. Dark regions represent 
areas of weak tuning, whereas bright areas represent strong orientation pref- 
erence. Note that dark areas are prevalent in pinwheel centers (for instance, 
middle circle lower row). L, lateral; M, medial; P, posterior; and A, anterior. 

Fig. 2. Examples of response properties of single units recorded at the center of same record~ng s~te that were simultaneously recorded but not d~splayed further. 
a pinwheel (A to C) and in the middle of an iso-or~entat~on doman (D to F). (A) and (C) and (F) are perist~mulus tlme h~stograms for the same three neurons shown in 
(D) dep~ct data from three neurons. For each neuron 50 superimposed wave- (A) and (D). The cells were stimulated by monocular presentat~on of an onented 
forms recorded from the four wires of the tetrode are shown separately. Note that drifting square wave gratlng. Each row corresponds to the cell's response to a 
the pattem of spike amplitudes across the four channels vanes from cell to cell. (B) different stimulus orientation ranging from 0" to 360" in 22.5" steps. In this 
and (E) show tuning cutves [Gaussian fit (lo)] from recordings in a pinwheel center example, neurons from the pinwheel center (A to C) exhibit wide variance in 
and an iso-orientatm domain Numbers (1 , 2, and 3) and colors label tuning orientation preferences (orlentaton scatter: 22.6", orientation range: 70°), where- 
curves from cells whose spike-waveforms (A and D) and PSMs (C and F) are as cells from the  so-orientation domain (D to F) show small vanance (orientation 
shown in the other panels. Unlabeled, gray c u ~ e s  represent neurons from the scatter, 12.3"; orientat~on range, 29"). 
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tween orientation centers and iso-orienta- 
tion domains (Table 1). This finding dem- 
onstrates that neurons in pinwheel centers 
are as selective for stimulus orientation as 
those in other locations of the cortex and 
that pinwheel centers do not contain larger 
populations of unselective cells, as might be 
inferred from the reduced brightness of the 
polar maps characteristic for these locations. 

One implication of this finding is that 
pinwheel centers would be expected to show 
greater local variance in orientation prefer- 
ence than iso-orientation domains. Using 
circular statistics, we defined the measures of 
orientation scatter and orientation range 
(13) and found, as expected, that both mea- 
sures were significantly larger for sites record- 
ed in pinwheel centers than for sites record- 
ed in iso-orientation domains (Table 1). 

This result is further illustrated by Fig. 2, 
which displays the response properties of a 
group of cells recorded from a pinwheel cen- 
ter (panels A, B, and C) and another group 
in an iso-orientation domain (panels D, E, 
and F). These   lots show that the neurons 
recorded from ;he pinwheel center are in- 
deed tuned to widely different orientations 
(orientation range 70' in Fig. 2, A to C), 
whereas the cells recorded in the iso-orien- 
tation domain are tuned to similar orienta- 
tions (and directions). This is most clearly 
visible in panels B and E of Fig. 2 where 
Gaussian fits of the orientation tuning 
curves for each of the cells are shown (10). . , 

Occasionally, we found sites within iso- 
orientation domains that dis~laved an un- . , 
expectedly large orientation scatter (14). 
These data seem to be at odds with the 

Table 1. Statistics for all the data and for a subset sampled from upper cortical layers (above 700 p,m) 
grouped by recording locations in pinwheel centers and iso-orientation domains. The Kolmogorov- 
Smirnov (KS) test was used to determine if the two samples were derived from the same population with 
respect to tuning bandwidth and firing rate. All values are well above 0.05, indicating that even this 
sensitive test cannot detect differences between the two samples. The t test (two-tailed; TT) was used 
to prove that the two samples significantly (P < 0.01) differ in orientation scatter and orientation range. 
Because here the scatter of the different parameters within the populations is the relevant entity, 
standard deviations (which describe this scatter) are used ratherthan standard errors of the mean (which 
describe the precision of the measurement of the population's mean). 

Statistic parameters Pinwheel Iso- 
orientation Significance 

centers domains (P value) 

Number of cells 
Unresponsive 
Untuned 
Tuned 
Mean tuning bandwidth of tuned 

cells (degrees) 
Mean firing rate to optimal 

stimulus (spike&) 
Number of sites with more than one 

tuned cell/total number of sites 
Mean orientation scatter' 

Group data 
345 
28 
48 

269 
31.3 + 17.6 

21.9 + 24.7 

63/77 

18.8 ? 11.2 

348 
25 
59 

264 
28.3 2 16.7 0.1 0 (KS) 

19.3 2 26.3 0.37 (KS) 

68/81 

13.8 2 9.8 0.0092 (TT) 
(degrees) 

Mean orientation ranget 40.5 + 24.6 28.3 ? 19.6 
(degrees) 

Sites with orientation range 14 5 
>60" 

Data from cortical depth less than - 700 p.m 

0.0024 (TT) 

Number of cells 183 152 
Unresponsive 13 10 
Untuned 24 13 
Tuned 146 129 
Mean tuning bandwidth of 28.2 2 15.4 26.4 + 18.0 0.1 5 (KS) 

tuned cells (degrees) 
Mean firing rate to optimal 19.5 + 20.5 19.2 2 23.4 0.96 (KS) 

stimulus (spikes/s) 
Number of sites with more than one 35/43 34/35 

tuned cell/total number of sites 
Mean orientation scatter 18.5 + 12.4 10.7 + 6.3 0.001 7 (TT) 

(degrees) 
Mean orientation ranget 39.2 2 26.6 22.8 + 14.4 0.0024 (TT) 

(degrees) 
Sites with orientation range 8 1 

>60° 

'Orientation scatter: standard deviation of orientations within one recording site. torientation range: smallest arc 
containing all data points. 

optical imaging data where iso-orientation 
domains are re~resented as reeions with a " 
homogeneous population of neurons with 
similar orientation tuning. However, opti- 
cal imaging based on intrinsic signals main- 
ly records neuronal activity from cells lying 
less than 600 to 800 p.m below the cortical 
surface ( 15, 16). Therefore, to compare di- 
rectly the optical and electrophysiological 
recordings, we determined the orientation 
scatter as a function of the recording depth 
(Fig. 3).  In the case of the pinwheel centers 
there is no trend of the orientation scatter 
to change with increasing depth. In con- 
trast, in iso-orientation domains a linear 
regression shows a significant (P < 0.05) 
positive slope, indicating that in this case 
orientation scatter continuously increases 
with depth. Consequently, if only data ob- 
tained from sites located in the upper 700 

Pinwheel centers 

* +  

Iso-orientation domains 

B 

Site contains 2 cells 5 cells 8 cells - 3 cells 6 cells 9 cells 
* 4 Cells 7 cells + 10 cells 

Fig. 3. Orientation scatter in pinwheel centers (A) 
and iso-orientation domains (B) as a function of 
depth. The orientation scatter at each site is plot- 
ted against cortical depth. The gray scale of the 
squares (see bottom of the figure) codes for the 
number of neurons that contributed to the data 
point. For the calculation of the regression line, the 
contribution of each data point was weighted ac- 
cording to the number of neurons sampled. 
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pm are considered (17), the difference in 
orientation scatter between pinwheel cen- 
ters and iso-orientation domains becomes 
much more proilounced than if the compar- 
ison is made for the complete data set (Ta- 
ble 1). Similarly, another related measure 
clearly reveals a difference between pin- 
wheel centers and iso-orientation domains 
(Table 1): especially in the upper 700 p n  of 
the cortex, the percentage of sites In \vhich 
the orientation range exceeds 60" is much 
larger in pinwheel centers (23%) than in 
iso-orientation domains (3%). 

Our observation that orientation scatter 
increases with cortical depth in iso-orienta- 
tlon domains could have at least t\vo expla- 
nations: First, it could reflect a true increase 
in the heterogeneity of orientation tuning 
in deep layers of cortex. This is supported by 
some earlier single-unit studies which also 
reported that orientation scatter increases 
with cortical depth (18). Alternatively, the 
strong curvature of the imaged cortical re- 
glon on the lateral gyrus might account-at 
least in part-for the larger orlentatioil 
scatter in deeper layers. Assuming a strictly 
columnar arrangeinent, it is likely that co- 
lumnar width would decrease with increas- 
ing cortical depth, thereby placing cells of 
different orientation preference 111 closer 
proximity. The present data do not allow us 
to distlng~~ish between these t\vo possible 
explanations. 

For the recordings targeted at pinwheel 
centers, it could be argued that, despite our 
effort to hit these locations, we were slightly 
off-target and missed a stnall population of 
untuned cells located precisely 111 the pin- 
\\heel centers. One way to address this con- 
cern is to score only those sites as successful 
pinwheel penetrations in ~vhich we found an 
orientation range larger than 6Q0, because 
this should only occur in the immediate 
vicinity of pinwheel centers. Interestingly, 
when only these data are considered, there 
are even fewer untuned cells (49'0; 3/72) than 
in the whole data set for pinwheel penetra- 
tions (14%; 481345). This further reinforces 
our conclusion that neurons in pinwheel 
centers are not less tuned than those located 
in iso-orientation doinains. 

Taken together the results of this study 
demoilstrate that neurons in or near pin- 
wheel centers exhibit the satne proportioil 
of unresponsive and orientation-tuned cells, 
have similar bandwidths and firing rate dis- 
tributions, and are thus as selective for stim- 
ulus orientation as neurons ill iso-orieilta- 
tion domains. Thus, the regions of reduced 
brightness in the polar maps, characteristic 
for pinwheel centers, do not reflect a lack of 
neuronal orientation selectivitv, but rather 

These results differ from predictions made 
by sotne models of orientatlon preference 
that assume orientation centers as regions of 
decreased orientation selectivity [see, for ex- 
ample, (19)]. Our data suggest that pinwheel 
centers, with respect to orientation prefer- 
ence, do not represent functionally distinct 
compartments wlthln striate cortex: Their 
orientation-tuning properties appear to be 
indistineuishable from those of iso-orienta- - 
tion domains. This has important implica- 
tions for cortical oreanization. It means that - 
the anatomical connectivitv of pinwheel 
centers reauires a remarkable degree of suec- - 
ificity. If orientation selectivity arises by the 
alignment of thalamic afferents (2L1), the - 
thalamocortical projections into pin~vheel 
centers will require a much higher degree of 
precision than similar projections into iso- 
orientatlon domains. By the same token, if 
cortico-cortical connections projecting to 
pin\\heel centers link reglons of similar ori- 
entation preference (2 1 ), they would require 
substantially more accuracy than those pro- 
iectine to iso-orientation domains. It is re- - 
markable that developmental t~~echanisms 
seem to be able to provide this degree of 
topographic precision for setting up the neu- 
ral network of the visual cortex. 
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Genetic Feminization of Pheromones and Its 
Behavioral Consequences in Drosophila Males 

Jean-Frangois Ferveur,* Fabrice Savarit, Cahir J. O'Kane, 
Gilles Sureau, Ralph J. Greenspan,f Jean-Marc Jallon 

Pheromones are intraspecific chemical signals important for mate attraction and dis
crimination. In the fruit fly Drosophila melanogaster, hydrocarbons on the cuticular 
surface of the animal are sexually dimorphic in both their occurrence and their effects: 
Female-specific molecules stimulate male sexual excitation, whereas the predominant 
male-specific molecule tends to inhibit male excitation. Complete feminization of the 
pheromone mixture produced by males was induced by targeted expression of the 
transformer gene in adult oenocytes (subcuticular abdominal cells) or by ubiquitous 
expression during early imaginal life. The resulting flies generally exhibited male het
erosexual orientation but elicited homosexual courtship from other males. 

I n many animal species, sex- and species-
specific bouquets of odors elicit subtle 
changes in potential sexual partners, which 
in turn may respond by appropriate behav
ior (J). In the fruit fly Drosophila, the ste
reotyped courtship behavior exhibited by 
male flies is induced largely by chemical 
cues, or pheromones, produced by his mate 
(2). These pheromones—the most abun
dant hydrocarbon molecules present on the 
fly cuticle (3)—are sensed principally by 
contact and are thought to play a crucial 
role in sexual isolation, tending to prevent 
interspecific mating (4, 5). 

In D. melanogaster, pheromones are strik
ingly sexually dimorphic (6) and have very 
different effects on male courtship behavior 
(7,8) (Table 1). Female flies produce dienes 
(two double bonds) with 27 and 29 carbons 
[cis,cis-7,11-heptacosadiene (7,11HD) and 
cis,cis-7,11-nonacosadiene (7,11ND)]. A few 
tens of nanograms of both dienes together 
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can elicit vigorous male precopulatory be
havior (7,8). Male flies synthesize monoenes 
(one double bond) with 23 and 25 carbons 
[ds-7-tricosene (7-T) and cis-7-pentacosene 
(7-P)]. 7-T can inhibit dose-dependent male 
excitation (8, 9), whereas 7-P stimulates 
males of some strains (4, 7,8). 

One of the few genetic factors known to 
control the production of sex pheromones in 

D. melanogaster (10, 11) is the gene trans
former (tra), which controls the sexual di
morphism of pheromones (8, 12) as part of 
its larger influence on somatic sex determi
nation. When the feminizing transgene 
UAS-tra, made with the female cDN A of the 
tra gene, is expressed in certain regions of the 
male brain, the male exhibits a bisexual ori
entation (13, 14). The tra gene also affects 
downstream sex-determination genes like 
fruitless and doublesex, which in turn control 
the sex pheromones or the male sexual ori
entation (15). Here, we expressed the UAS-
tra transgene at different stages of develop
ment and in a particular group of abdominal 
cells, with the aim of producing a male fly 
with an unaltered sexual orientation, but 
with a female pheromonal profile. 

To assess the critical period during 
which the tra gene product regulates pher
omone expression, we transiently expressed 
UAS-tra throughout the organism at differ
ent developmental stages by crossing it to a 
line in which GAL4 is fused to a heat shock 
70 promoter (16). The tra gene, fused to a 
promoter containing a GAL4-dependent 
upstream activation sequence (L7AS), was 
therefore expressed with the same temporal 
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Fig. 1. Production of sex 
pheromones in 4-day-
old male flies as a func
tion of temporal activa
tion of UAS-tra or of 
UAS-lacZ. A single pulse 
of heat shock (37°C) was 
applied for 2 hours, at 
various times (or 6 hours 
before pupariation). Each 
data point represents the 
mean percentage (±SE) 
of 7-monoenes (%7-T + 
%7-P)andof7,11 dienes 
(%7,11-HD + %7,11-ND) 
for 20 hsp-GAL4 UAS-tra 
individuals and for 10 
hsp-GAL4 UAS-lacZ in
dividuals. Control, non-
heat-shocked hsp-GAL4 
UAS-tra and hsp-GAL4 
UAS-lacZ males yielded 

52.8 ± 1.5 and 57.5 ± 2.3% 7-monoenes, and 0.9 ± 0.5 and 0% 7,11 dienes, respectively. Values were 
measured as in {21). 
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