plete energy randomization. The translation-
al energy dependence of the CI~ + CH,Br
Sy reaction (5, 8), for example, is signifi-
cantly greater than that predicted by statis-
tical theory (16) and differs dramatically
from the observed temperature dependence
of that reaction (5). Graul and Bowers (14,
15) have shown that the kinetic energy re-
lease distribution (KERD) of the product
ions of exothermic halide-methyl halide
Sy2 reactions is significantly lower than that
predicted by statistical models, and the prod-
uct neutral is therefore internally “hot.”

Both the translational energy and
KERD " experiments represent cases in
which an ion-molecule complex is formed
with energy partitioned nonstatistically
between the vibrational and relative
translational modes of the two species.
Increased translational energy between re-
actants leads to a reactant complex formed
with excited translational modes, whereas
the neutral molecule in the product com-
plex is vibrationally hot as a result of the
reaction exothermicity. In both cases,
poor translation-vibrational coupling in
the Sy2 intermediate complex prevents
statistical redistribution of energy.

The nonstatistical behavior of the ha-
lide-methyl halide systems may reflect the
short lifetimes (10 to 100 ps) (7) of their
intermediate complexes, which Boering
and Brauman have shown to be a deter-
mining factor of the efficiency of intermo-
lecular vibrational energy transfer (18).
The short lifetimes are a result of the small
size and low association energies (~10
kcal mol™') (14, 19) of halide-methyl
halide complexes, which are not typical of
many ion-molecule reactions. The associ-
ation energy of [CI-CICH,CN]~, for ex-
ample, is ~19 kcal mol™! (10). Moreover,
the internal vibrations of the neutral mol-
ecules have significantly different frequen-
cies (for example, the methyl umbrella
mode of CH,Br differs from similar modes
in CICH,CN) that might influence cou-
pling. Although the limits of poor energy
redistribution are yet to be determined,
our results for Eq. 1 show that gross non-
statistical dynamics are not general to all
gas-phase Sy;2 reaction intermediates.
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Accessible Solitons
Allan W. Snyder* and D. John Mitchell

Solitons are ubiquitous. Their description involves abstruse mathematics and is limited
to a two-dimensional idealization. A nonlocal model is presented that provides a radical
simplification and allows for an elegant description of soliton collisions, interactions, and
deformations in two and three dimensions. The model reveals an intimate connection
between solitons and the linear harmonic oscillator. It foreshadows a photonic switch in
which a bright beam can steer a distant dim beam, and it predicts the existence of

noncircularly symmetric solitons.

Solitary waves create their own channel as
they travel in a uniform medium, remaining
localized and preserving their shape (I).
But, they can be dramatically altered by
colliding with one another (2). Solitons are
solitary waves that are unaltered by colli-
sions (1). The conventional models of soli-
ton propagation are complex; we provide a
simple model.

Consider the example of monochromat-
ic light beams in a homogeneous medium
whose (squared) refractive index (3) isn? =
n? + dn’. Here, n; is the constant linear
part of the refractive index, whereas n? is
the nonlinear induced change caused by the
beam. Typical of many materials (4—7), 8n?
is positive and obeys dn* << n?. The con-
ventional model assumes an idealized local
response when, by definition, 8n? at posi-
tion x is proportional to the beam’s inten-
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sity at x. This local (Kerr) model admits
solitons in two dimensions only. The result-
ing Schrodinger equation does not have
explicit closed-form solutions, except for
special initial conditions. Furthermore, the
inverse scattering technique that is required
for solution is excessively mathematical (1).
This complexity is not fundamental to soli-
tons, but rather, is a consequence of the
specific model.

Consider a model of nonlinearity whose
response is highly nonlocal. Then, by defi-
nition, a light beam of characteristic radius
p creates a circularly symmetrical refractive
index change dn? whose characteristic spa-
tial extent is much larger than p and whose
axis is set by the beam center and its initial
direction. Consequently, 8n? depends on
the integrated intensity of the beam, or
power, P. The situation of high nonlocality
is analogous to observing distant point
sources through a badly blurred lens. When
the point sources (light beams) are suffi-
ciently close to the lens axis, the shape of
the blur circle (nonlocal response) is indis-
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tinguishable from that due to one point
source alone. At the other extreme, a local
response is analogous to having a delta-
function blur circle. Various materials ex-
hibit a highly nonlocal response, including
photorefractive materials (5-7), liquid crys-
talline materials (8), and materials that ex-
hibit laser-induced thermal nonlinearities
(9). The underlying physical processes for
such nonlocality is also known (10). Ad-
vances by Segev et al. (5, 6) suggest that
photorefractive materials are the most suit-
able for investigating large nonlocality (11).

We now transcribe the nonlocal model
into an expression for 3n%. The key idea is
that the spatial extent of each light beam,
as well as the distance between them, is
negligible compared to the characteristic
nonlocal response length of n%. Under
these conditions, the refractive index dn?
“seen” by the beams is that confined near
the axis of 3n%. Thus, we need only keep the
first two terms of a Taylor series. This leads
to dn%(r, P) = &n?%(0, P) — r2a?(P), where
r = |x — x| is the transverse distance from
the beam center. Substituting this into the
expression for the refractive index, n? = n?
+ 8n?, leads to our model for nonlinearity

n¥(r,P) = n} — r*a?(P) (1)
Here, ny = n(0,P) is the maximum refractive
index. a(P) is a given material property. It is
real and a(0) = 0. We define a nonlocal
Kerr medium as the special case when a?(P)
= «?P, where 7 is a material constant. For
optical materials (4-6), ny, = n;.

The interpretation of Eq. 1 is that a beam
of power P induces a circularly symmetric,
parabolic refractive index waveguide, n(r,P).
The axis at position x of the induced refrac-
tive index is specified by the initial direction
of the beam center. For example, x for a
Gaussian shaped beam of power P is located
at the maximum of the beam with a = a(P)
in Eq. 1, whereas x for two identical parallel
beams of total power 2P is midway between
the two maxima with a = a(2P). Thus, each
beam behaves differently from one alone.

The electric field E of light obeys Max-
well’'s equations which, for homogeneous
nonlinear materials, are formally equivalent
(12) to the familiar Schrédinger equation,
2ikny(ap/oz) + V2 ¢ + k*(n? — nd) ¢ = 0,
where E = ez, k = 2@\, with \ the
wavelength of light in vacuum, z the longi-
tudinal coordinate, and VZ = (8%/9x%) +
(8%/3y?). Taking n? from Eq. 1, our defining
equation for solitons is

2ikn,(3/0z) + V2§ — k'’ (P = 0
(2)

where r = |x — x| is the transverse dis-
tance from the beam center and P = [| /2
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dx dy is the beam power. The initial condi-
tions of the beam center at x, defined as the
first moment of the intensity profile |2,
set the axis of this circularly symmetric
system. We choose x = 0. This is the fa-
mous equation for the linear harmonic os-
cillator (13). Although linear in ¥, it none-
theless describes the highly nonlinear phe-
nomenon of solitons through the depen-
dence of the coefficient a on beam power P,
a conserved quantity.

Soliton propagation is thus reduced to one
of the simplest and best studied equations of
linear physics. We merely borrow from the
literature of the linear harmonic oscillator or
equivalently from the propagation of light in a
parabolic refractive index medium (14, 15).
Because the physics of these two classical
problems is so well understood, we first trans-
late it into the context of solitons. This im-
parts intuition before presenting the mathe-
matics. For example, consider how a Gaussian
beam will propagate in a highly nonlocal ho-
mogeneous medium when its initial width is
fixed, but when its initial intensity, and hence
its power, is changed. At zero power, n = n, in
Eq. 1, and the beam diffracts as it does in a
linear homogeneous medium. For finite pow-
er, the beam induces the parabolic index me-
dium of Eq. 1 with its axis at the beam center.
It is well known (14) that the beam preserves
its Gaussian shape but its characteristic width
“breathes” sinusoidally as it travels in a
straight path. If a(P) in Eq. 1 is monotonically
increasing, a critical power P = P_ exists when

beam diffraction is balanced by beam-induced
refraction. This is a soliton. For P > P,
refraction initially overcomes diffraction and
the beam initially contracts, whereas for P <
P, the reverse happens and the beam initially
expands (Fig. 1, left).

Simple expressions can be derived to
describe Gaussian beam propagation in an
arbitrary, highly nonlocal medium. To do
this, we substitute a Gaussian (trial) func-
tion into Eq. 2 as shown in (16). This leads
to a closed-form expression for the intensity
I = |¥l? of the Gaussian beam as a func-
tion of spatial propagation distance z, where

1(z) = L(z)e™P*® 3)
with I_(z) = P/p(z) V7 for two-dimension-
al (2D) beams. For 3D beams, I (z) = P/
wp*(z), with x in Eq. 3 replaced by the
radial position r. The characteristic half-
width or radius has the simple form

o*(P,)

2
A 2qz + oP) sinfqz  (4)

—— = cos
Po

where p, is the initial beam width, g =
a(P)/n,, and the critical power P, is defined
by a(P_) = 1/kp. For the special case of a
nonlocal Kerr medium, a?(P) = vy?P, where
vy is a material constant. Then P, =
1/k*y?p¢ and g = yVP/n,,.

Next, we discuss the interaction of two
Gaussian beams. To impart intuition, we
again translate the physics from the classical

Beam evolution

One beam

Power

Colliding beams

P=Py2

Fig. 1. Gaussian beam propagation in a highly nonlocal Kerr medium. The initial beam width is the same
in all cases, but the intensity, and hence, the power P is changed. The characteristic beam width or
diameter is stationary only when P = P_, otherwise it changes sinusoidally as shown on the left for a
single beam and on the right for two beams. Two identical beams, initially in parallel, will strongly interact
and periodically collide as shown on the right. The interference within the boxed overlap zone is shown

in Fig. 2 for coherent beams.

1539



problem of propagation in a parabolic medium
(14, 15) before we give the mathematics.
When two identical Gaussian beams, of total
power P, are launched in parallel, they “see” a
different parabolic medium, one characterized
by a = a(P) in Eq. 1, rather than one beam
alone of power P/2, for which a = a(P/2).
The axis of this medium is midway between
the two maxima of the beams. For zero power,
a = 0 and the medium is homogeneous. Each
beam then diffracts as it travels in a straight
path. For finite power, each beam is parallel to
but displaced from the axis of the induced
parabolic medium. Such beams are well
known to undergo sinusoidal trajectories
about thé axis of the parabolic medium. Ac-
cordingly, two initially parallel beams of a
highly nonlocal nonlinearity will strongly in-
teract and undergo periodic collisions, with
the period depending on P, but each beam
retains the same form as the isolated beam of
power P discussed above (Fig. 1, right). The
beam trajectories are dictated by paraxial ray
optics (17). Beams are unaltered by collision.
Phase plays no role other than interference
(18) as shown in Fig. 2. In three dimensions,
two beams will spiral about one another, like
rays in a parabolic index medium (15), if they
are initially skew to each other.

Simple closed-form expressions describe
these interacting Gaussian beams. We find
(17) that the trajectory x, of each beam
center obeys the paraxial ray equation,
(dzxo/dzz) = —(a/no)zxo, so that xy(z) =
%5(0)cos(qz) with ¢ = a(P)/ny, when the
beams are initially parallel. The summed
beam intensity I(x + x5) + I(x — x) is
shown on the right side of Fig. 1 and is
given by Eq. 3 replacing x with (x = xg).
The expression (17) for the composite two-
beam intensity (Fig. 2) is

(IHA) =1, +1_ %= 2VI,I_cos® (5)

where I, is I(x £ x) in Eq. 3, and A
is chosen so that the power is P. For soli-
tons (P = P_), then p30 = 2x,(0)x sin(qz),
with p(z) = po, kpéa(Pc) =1, and 2A =
{1 + e x¢@/pg)=1, :

Finally, suppose the above two Gaussian
beams have the same width but that one has
power, P_ — 8, whereas the other has power,
3, where 8 — 0. It can then be shown (19)
that the “bright” beam of power P, — &
travels straight as if it were in isolation. The
“dim” beam of power, 8, remains uniform
but oscillates about the bright beam in a
sinusoidal trajectory. It would diffract and
travel in a straight path if it is in isolation.
This finding has implications to photonic
switching (18, 20) in that a “distant” dim
beam can be steered by a soliton.

Our results for Gaussian beams follow by
direct substitution in Eq. 2. An arbitrary beam
also undulates sinusoidally. Its center also fol-
lows paraxial ray optics, but its shape changes
(17). In general, an arbitrary field ¢ of Eq. 2
can be represented by a linear sum of solitons
, ¢®2. The Hermite-Gauss functions s, form
a complete set (14, 15). The Gaussian is the
lowest order soliton. Unlike a local medium,
noncircularly symmetric solitons exist in a
highly nonlocal nonlinear medium. Because
the eigenvalues B, are equally spaced, all so-
lutions of Eq. 2 are sinusoidal.

In summary, the traditional model for
solitons requires abstruse mathematics and
is limited to a 2D, cubic (Kerr) nonlinear-
ity, whereas solitons of a highly nonlocal
medium obey one of the simplest and best
studied equations of linear physics. We
merely borrow from the literature of the
linear harmonic oscillator or propagation in
a parabolic refractive index medium to ob-
tain an elegant description of soliton colli-
sons, interactions, and deformations in two
and three dimensions for both cubic (Kerr)

Beam collision

In phase

© out of phase

Fig. 2. The intensity contours for two colliding solitons in the region shown by the dashed square on the
right side of Fig. 1. The beams are in phase on the left (constructive interference) and ar out of phase on
the right (destructive interference) as discussed in (77).
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and non-Kerr nonlinearities. An arbitrary
initial field can be formally expressed as a
linear superposition of solitons.

It would appear that a highly nonlocal
nonlinearity offers the simplest model pos-
sible for introducing the concept of a soli-

ton (21).
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Preservation of Chitin in
25-Million-Year-Old Fossils

B. Artur Stankiewicz, Derek E. G. Briggs, Richard P. Evershed,
Matthew B. Flannery, Michael Wuttke

Chitin is present in fossil insects from the Oligocene (24.7 million years ago) lacustrine
shales of Enspel, Germany. This result, which was obtained by analytical pyrolysis,
extends by nearly 25 million years the length of time that chemically detectable remains
of this biomolecule are known to survive. The embedding sediment is dominated by
diatoms, which reflect high productivity in the paleolake. The primary control on the
preservation of chitin is thus not time; it may persist in older sediments where suitable

paleoenvironmental conditions prevailed.

Chit'm, which is one of the most abundant
macromolecules on Earth, is also one of the
most enigmatic of molecular fossils. An esti-
mated 10! tons of chitin is produced annually
in the biosphere, most of it in the oceans (1).
It occurs in a range of organisms but is partic-
ularly important as a constituent of arthropod
cuticles (1-4), where it is cross-linked with
proteins via catechol and histidyl moieties
(5). Although biodegradation in the water
column and sediment normally removes al-
most all of the chitin produced in the oceans
(3), experiments have demonstrated that
chitin is the component of shrimps that is
most resistant to degradation (6) and organic
remains of arthropod cuticle are abundant in
the fossil record, in some cases preserving
remarkable morphological detail (7). Chitin
has been detected in insects in terrestrial de-
posits of Pleistocene age (~130,000 years ago)
(8) and in asphalt deposits from California
(9). However, analyses have failed to provide
evidence for its presence in older fossils except
(6, 10-12) for traces of amino sugars in the
calcified skeletons of one Cretaceous and
three Tertiary decapod crustaceans (13). Even
where the morphology of the cuticle appears
well preserved, the original chemical compo-
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sition may be completely altered.
Pyrolysis—gas chromatography-mass spec-
trometry (py-GC-MS) (6, 14-16) provides a

powertful tool for the chemical characteriza-
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tion of invertebrate cuticles (9, 15), particu-
larly in cases in which the sample size is
limited to a few micrograms. Investigation of
the cuticles of fossil arthropods from 15 sites
ranging in age from Silurian to Cretaceous
revealed no trace of the original chemical
components of chitin (12). The chemical sig-
nature either (i) was dominated by the n-alk-
l-ene and n-alkane doublets characteristic of
highly aliphatic biopolymers or (ii) contained
a substantial aromatic component including
alkylbenzenes and alkylindenes and relatively
abundant sulfur-containing compounds such
as thiophenes (12).

Here we demonstrate that chitin is pre-
served in the late Oligocene [24.7 million
years ago (Ma)] Enspel Fossillagerstitte
(17) near Bad Marienberg, in the Wester-
wald, Rheinland-Pfalz, Germany, where
maar-lake deposits are interbedded with tuff

Fig. 1. Photomicrographs of (A) the ventral view of a beetle (Coleoptera: Curculionoidea) from level
12 of the Oligocene (24.7 Ma) of Enspel, western Germany; (B) an SEM image of the cuticle of a modern
mealworm beetle (Tenebrio molitor) that reveals the layers of cuticle overlapping at different angles; (C
an SEM image of a fractured edge of cuticle of the specimenillustrated in (A) that shows chitinous fibers;
and D) an SEM image of the shale matrix that contains the fossil insects and reveals that pennate
diatoms are the dominant constituent. (Images were made with a Cambridge Stereoscan 250 Mk3 SEM
at 7 to 12 kV after specimens were coated with gold.)
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