
plete energy randotnization. The translation- 
al energy dependence of the C1- + CH3Br 
S,2 reaction (5, 8) ,  for example, is signifi- 
cantly greater than that predicted by statis- 
tical theory (16) and differs dramatically 
from the observed temperature dependence 
of that reaction (5). Graul and Bowers (14, 
15) have shown that the kinetic energy re- 
lease distribution (KERD) of the product 
ions of exothermic halide-methyl halide 
SN2 reactions is significantly lo~ver than that 
predicted by statistical models, and the prod- 
uct neutral is therefore internallv "hot." 

Both the tral~slational eLergy and 
KERD experiments revresent cases in 
which an ion-molecule cotnplex is formed 
with energy partitioned nonstatistically 
between the vibrational and relative 
translational tnodes of the two saecies. 
Increased translat~onal energy between re- 
actants leads to a reactant co~nnlex formed 
with excited translational modes, whereas 
the neutral molecule in the ~ r o d u c t  com- 
plex is vibrationally hot as a result of the 
reaction exothermicity. In both cases, 
poor translation-vibrational coupling in 
the S,2 intertnediate complex prevents 
statistical redistribution of energy. 

The nonstatistical behavior of the ha- 
lide-methyl halide systems may reflect the 
short lifetimes (10 to 100 ps) (7) of their 
intertnediate complexes, which Boering 
and Brau~nan have sho\vn to be a deter- 
minine factor of the efficiencv of intermo- 
lecula; vibrational energy tiansfer (1 8 ) .  
The short lifetimes are a result of the small 
size and lo\\, association energies (-10 
kcal tnolp') (14, 19) of halide-methyl 
halide complexes, which are not typical of 
many ion-molecule reactions. The associ- 
ation energy of [C1.C1CH2CNI-, for ex- 
ample, is -19 kcal tnolp' (10). Moreover, 
the internal vibrations of the neutral mol- 
ecules have significantly different frequen- 
cies (for example, the methyl umbrella 
mode of CH3Br differs from similar modes 
in C1CH2CN) that might influence cou- 
pling. Although the limits of poor energy 
redistribution are yet to be determined, 
our results for Eo. 1 show that eross non- - 
statistical dynamics are not general to all 
gas-phase S,2 reaction intermediates. 
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Accessible Solitons 
Allan W. Snyder* and D. John Mitchell 

Solitons are ubiquitous. Their description involves abstruse mathematics and is limited 
to a two-dimensional idealization. A nonlocal model is presented that provides a radical 
simplification and allows for an elegant description of soliton collisions, interactions, and 
deformations in two and three dimensions. The model reveals an intimate connection 
between solitons and the linear harmonic oscillator. It foreshadows a photonic switch in 
which a bright beam can steer a distant dim beam, and it predicts the existence of 
noncircularly symmetric solitons. 

Solitary waves create their own channel as 
thev travel in a unifortn medium, retnainine 
localized and preserving their shape ( I  [ 
But, they can be dramatically altered by 
colliding with one another (2 ) .  Solitons are 
solitarv n7aves that are unaltered bv colli- 
sions ('1 ). The conventional models o f  soli- 
ton propagation are complex; we provide a 
simple model. 

Consider the examvle of monochromat- 
ic light beams in a homogeneous medium 
\\,hose (squared) refractive index (3) is n2 = 

n: + En2. Here, n, is the constant linear 
nart of the refractive index, whereas Sn' is 
the nonlinear induced change caused by the 
beam. Typical of many tnaterials (4-7), Sn' 
is positive and obeys 871' << nf. The con- 
ventional model assumes an idealized local 
response when, by definition, S n h t  posi- 
tion x is proportional to the beam's inten- 
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sity at x. This local (Kerr) model admits 
solitons in two dimensions onlv. The result- 
ing Schrijdinger equation doks not have 
explicit closed-form solutions, except for 
special initial conditions. Furthermore, the 
inverse scattering technique that is required 
for solution is excessi\~ely mathematical (1 ). 
This comvlexitv is not fundamental to soli- 
tons, but'rathei, is a consequence of the 
specific model. 

Consider a model of nonlinearity whose 
response is highly nonlocal. Then, by defi- 
nition, a light beam of characteristic radius 
D creates a circularlv svrnmetrical refractive 
index change 871' whose characteristic spa- 
tial extent is much larger than D and whose 
axis is set by the bealncenter a h  its initial 
direction. Consequently, Sn' depends on 
the integrated intensity of the beam, or 
power, P. The situation of high nonlocality 
is analogous to observing distant point 
sources through a badly blurred lens. When 
the point sources (light beams) are suffi- 
ciently close to the lens axis, the shape of 
the blur circle (nonlocal response) is indis- 

1538 SCIENCE \'OL 1-76 6 JUNE 1997 a.a.w.sclencemag org 



tinguishable from that due to one point 
source alone. At the other extreme, a local 
response is analogous to having a delta- 
function blur circle. Various materials ex- 
hibit a highly nonlocal response, including 
photorefractive materials (5-7), liquid crys- 
talline materials (8). and materials that ex- . .. 
hibit laser-induced thermal nonlinearities 
(9). The underlying physical processes for 
such nonlocality is also known (10). Ad- 
vances by Segev et al. (5, 6) suggest that 
photorefractive materials are the most suit- 
able for investigating large nonlocality (1 1 ). 

We now transcribe the nonlocal model 
into an expression for 6n2. The key idea is 
that the s~atial extent of each lieht beam. - 
as well as the distance between them, is 
negligible compared to the characteristic 
nonlocal response length of 6n2. Under 
these conditions, the refractive index 6n2 
"seen" by the beams is that confined near 
the axis of an2. Thus, we need only keep the 
first two terms of a Taylor series. This leads 
to 8n2(r, P) = h2(0 ,  P) - r2a2(P), where 
r = Ix - Zl is the transverse distance from 
the beam denter. Substituting this into the 
expression for the refractive index, n2 = nt  
+ 6n2, leads to our model for nonlinearity 

Here, n,, = n(0,P) is the maximum refractive 
index. a(P) is a given material property. It is 
real and a(0) = 0. We define a nonlocal 
Kerr medium as the special case when a2(P) 
= y2P, where y is a material constant. For 
optical materials (4-6), n,, nL. 

The interpretation of Eq. 1 is that a beam 
of power P induces a circularly symmetric, 
parabolic refractive index waveguide, n(r,P). 
The axis at position Z of the induced refrac- 
tive index is specified by the initial direction 
of the beam center. For example, Z for a 
Gaussian shaped beam of power P is located 
at the maximum of the beam with a = a(P) 
in Eq. 1, whereas Z for two identical parallel 
beams of total power 2P is midway between 
the two maxima with a = a(2P). Thus, each 
beam behaves differently from one alone. 

The electric field E of light obeys Max- 
well's equations which, for homogeneous 
nonlinear materials, are formally equivalent 
(1 2) to the familiar Schrodinger equation, 
2ikno(a+/az) + V$ + + k2(n2 - ng) + = 0, 
where E = +eibz, k = 2.rr/h, with h the 
wavelength of light in vacuum, z the longi- 
tudinal coordinate, and V$ = (a2/a2) + 
(a2/ay2). Taking n2 from Eq. 1, our defining 
equation for solitons is 

where r = I x - ii 1 is the transverse dis- 
tance from the beam center and P = J 1 $ 1 

dx dy is the beam power. The initial condi- 
tions of the beam center at 2, defined as the 
first moment of the intensity profile I $ 1  2, 

set the axis of this circularly symmetric 
system. We choose Z = 0. This is the fa- 
mous equation for the linear harmonic os- 
cillator (1 3). Although linear in +, it none- 
theless describes the highly nonlinear phe- 
nomenon of solitons through the depen- 
dence of the coefficient a on beam power P, 
a consenred quantity. 

Soliton propagation is thus reduced to one 
of the simplest and best studied equations of 
linear physics. We merely borrow from the 
literature of the linear harmonic oscillator or 
equivalently from the propagation of light in a 
parabolic refractive index medium (1 4, 15). 
Because the physics of these two classical 
problems is so well understood, we first trans- 
late it into the context of solitons. This im- 
parts intuition before presenting the mathe- 
matics. For example, consider how a Gaussian 
beam will propagate in a highly nonlocal ho- 
mogeneous medium when its initial width is 
fixed, but when its initial intensity, and hence 
its power, is changed. At zero power, n = n,, in 
Eq. 1, and the beam diffracts as it does in a 
linear homogeneous medium. For finite pow- 
er, the beam induces the parabolic index me- 
dium of Eq. 1 with its axis at the beam center. 
It is well known (14) that the beam preserves 
its Gaussian shape but its characteristic width 
"breathes" sinusoidally as it travels in a 
straight path. If a(P) in Eq. 1 is monotonically 
increasing, a critical power P = PC exists when 

beam diffraction is balanced by beam-induced 
refraction. This is a soliton. For P > PC, 
refraction initially overcomes diffraction and 
the beam initially contracts, whereas for P < 
PC, the reverse happens and the beam initially 
expands (Fig. 1, left). 

Simple expressions can be derived to 
describe Gaussian beam propagation in an 
arbitrary, highly nonlocal medium. To do 
this, we substitute a Gaussian (trial) func- 
tion into Eq. 2 as shown in (1 6). This leads 
to a closed-form expression for the intensity 
I = 1 $ 1  of the Gaussian beam as a func- 
tion of spatial propagation distance z, where 

with Im(z) = ~ / p ( z ) G  for two-dimension- 
al (2D) beams. For 3D beams, Im(z) = P/ 
mp2(z), with x in Eq. 3 replaced by the 
radial position r. The characteristic half- 
width or radius has the simple form 

where p,, is the initial beam width, q = 
a(P)/n,,, and the critical power PC is defined 
by a(P,) = l/kpg. For the special case of a 
nonlocal Kerr medium, a2(P) = yZP, where 
y is a material constant. Then PC = 
l/k2y2p; and q = yfl/n,,. 

Next, we discuss the interaction of two 
Gaussian beams. To impart intuition, we 
again translate the physics from the classical 

Beam evolution 

Fig. 1. Gaussian beam propagation in a highly nonlocal Ken medium. The initial beam width is the same 
in all cases, but the intensity, and hence, the power P is changed. The characteristic beam width or 
diameter is stationary only when P = PC, othewise it changes sinusoidally as shown on the I& for a 
single beam and on the right for two beams. Two identical beams, initially in parallel, will strongly interact 
and periodically collide as shown on the right. The interference within the boxed overlap zone is shown 
in Fig. 2 for coherent beams. 
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problem of propagation in a parabolic medium 
(14, 15) before Ice give the mathematics. 
\Vl~en two identical Gaussian beams, of total 
power P, are launched in parallel, they "see" a 
different parabolic medium, one characterized 
by uc = uc(P) in Eq. 1, rather than one beam 
alone of power P/2, for ~vhich a = a(P/2).  
The  axis of this mediirm is midway between 
the two maxima of the beams. For zero nourer. 
a = 9 and the medium is hoinogeneous. Each 
beam then d~ffracts as it travels in a straiirht u 

p a t h  For finite power, each beam is parallel to 
but disvlaced from the axis of the induced 
parabolic medium. Such beams are n-ell 
known ro ~rndergo sinusoidal traiectories - 
about the axis of the parabolic medium. Ac- 
cordingl\-, two hitiall\- parallel beams of a 
highly nonlocal nonlinearity will strongly in- 
teract and ~rndereo oeriodic collisions, with 

u 

the period depending on P, but each beam 
retains the same forin as the isolated beam of 
power P discussed above (Fig. 1, right). T h e  
beam trajectories are dictated by paraxlal ray 
optics (17). Beains are unaltered by collision. 
Phase plays no  role other than inte~ference 
(18) as shown In Fig. 2. In three d~mensions, 
two beams will spiral about one another, like 
rays in a parabolic index mediuin (15),  if they 
are initially skew to each other. 

Slnlole closed-form ex~ressions describe 
these interacting Gaussian beams. W e  find 
(17)  that  the  trajectory x, of each bean1 
center obeys the  paraxial ra\- equation, 
(d2x,/dz" = -(a/no)?xxo, so that ~ ~ ( 7 )  = 
x,(c?)cos(qz) with q = uc(P)/no, when the  
beams are initially parallel. T h e  summed 
beam intensity I(x + xo) + I(x - x,) is 
shown o n  the  rieht side of Fie. 1 and is 

u u 

given by Eq. 3 replacing x with (x -C xO). 
T h e  expression (1 7 )  for the  composite two- 
bean1 intensity (Fig. 2) is 

where I, is I(x I x,) i n  Eq. 3, and  A 
is chosen so that  the  power is P. For soli- 
tons ( P  = PC) ,  t h e n  ~ $ 3  = 2s,(@)x sin(qz),  
with p(7) = po, kpiuc(P,) = 1, and 2A = 
(1 + e-"~('?)lp;}-l - .  

Finally, suppose the above t\vo Gaussian 
beams have the same width but that one has 
power, PC - 6, whereas the other has power, 
6, where 6 + c?. It call then be shonrn (19) 
that the  "bright" beam of power PC - 6 
travels straieht as if it were in isolation. T h e  " 
"dim" heam of power, 6, remains uniform 
but oscillates about the  bright beam in a - 
sinusoidal trajectory. It would diffract and 
travel in  a straight path if it is in isolation. 
This finding has implicatio~ls to photonic 
switching (18,  2C) in that a "distant" dim 
beam can be steered by a soliton. 

Our results for Gaussian beams follo~\r by 
direct substitution in Eq. 2. An arbitrary beam 
also undulates sinusoidally. Its center also fol- 
10%-s paraxial ray optics, but ~ t s  shape changes 
(17).  In general, an  arbitrar\- field + of Eq. 2 
can be represented b\- a linear sum of solitons 
$,,e'P,,'. The  Hermite-Gauss f~rnctions +,, form 
a conlnlete set 114. 15). T h e  Gaussian is the 
lomes; order soliton. Unlike a local medi~rm, 
noncircularl\- s\-mmetric solitons exist in a 
highly nonldcai nonlinear medium. Because 
the eigenvalues p,, are equally spaced, all so- 
lutions of Eq. 2 are sinusoidal. 

In  summar\-, the  traditional inodel for 
solitons r eq~~i res  abstruse ~ n a t l ~ e ~ n a t i c s  and 
is limited to a 2D, cubic (Kerr) nonlinear- 
ity, whereas solitons of a highly nonlocal 
medium obey one of the  simplest and best 
s t ~ ~ d i e d  equations of linear physics. Vile 
merely borron, from the  literature of the  
linear harmonic oscillator or propagation in 
a oarabolic refractive index inediu~n to ob- 
tain a n  elegant descriptio~l of soliton colli- 
sons, interactions, and defor~nations in two 
and three dimensions for both cubic (Kerr) 

Fig. 2. The ntensty contours for two colliding solitons in the regon shown by the dashed square on the 
r~ght side of Fg. 1 .  The beams are in phase on the left (constructive interference) and a out of phase on 
the right (destructve nterference) as d~scussed in (17). 

and non-Kerr nonlinearities. A n  arbitrary 
initial field can be formally expressed as a 
linear superposition of solitons. 

I t  would appear that a highly nonlocal 
nonlinearity offers the  s i m ~ l e s t  nlodel oos- 
sible for in;roducing the  concept of a Aoli- 
ton (21) .  
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posite two-beam intensity distribution as discussed be- 
low Eq. 2. It is thus centered approximately on the bright 
beam. Propagation then follows from the physics of the 
parabolic medium (14, 1.5) The dim beam is displaced 
from the axis and so undergoes sinusoidal oscillations 
about the bright beam, whereas the on-axis bright beam 
travels straight. Further, the dim and bright beam have 
the same width--that necessary to remain uniform in the 
a - a(P,) parabolic medium. 

20. Y. Silberberg, Opt. News 15, 7 (1 989). 
21. We previously (22, 23) showed that linear physics 

provides deep insight into the soliton dynamics of a 
local nonlinear medium, but large nonlocality allows 
us to demonstrate the concept with particular ele- 

Preservation of Chitin in 
25-Million-Year-Old Fossils 

B. Artur Stankiewicz, Derek E. G. Briggs, Richard P. Evershed, 
Matthew B. Flannery, Michael Wuttke 

Chitin is present in fossil insects from the Oligocene (24.7 million years ago) lacustrine 
shales of Enspel, Germany. This result, which was obtained by analytical pyrolysis, 
extends by nearly 25 million years the length of time that chemically detectable remains 
of this biomolecule are known to survive. The embedding sediment is dominated by 
diatoms, which reflect high productivity in the paleolake. The primary control on the 
preservation of chitin is thus not time; it may persist in older sediments where suitable 
paleoenvironmental conditions prevailed. 

Chi t i n ,  which is one of the most abundant sition may be completely altered. 
macromolecules on Earth, is also one of the Pyrolysis-gas chromatography-mass spec- 
most enigmatic of molecular fossils. An  esti- trometry (py-GC-MS) (6, 14-16) provides a 
mated 10" tons of chitin is produced annually powerful tool for the chemical characteriza- 
in the biosphere, most of it in the oceans (1). 
It occurs in a range of organisms but is uartic- - - 
ularly important as a constituent of arthropod 
cuticles (1-4), where it is cross-linked with 
proteins via catechol and histidyl moieties 
(5). Although biodegradation in the water 
column and sediment normallv removes al- 
most all of the chitin produced in the oceans 
(3). ex~eriments have demonstrated that ~ , ,  . 
chitin is the component of shrimps that is 
most resistant to degradation (6) and organic 
remains of arthropod cuticle are abundant in 
the fossil record, in some cases preserving 
remarkable morphological detail (7). Chitin 
has been detected in insects in terrestrial de- 
posits of Pleistocene age (-130,000 years ago) 
(8) and in asphalt deposits from California 
(9). However, analyses have failed to provide 
evidence for its presence in older fossils except 
(6, 10-12) for traces of amino sugars in the 
calcified skeletons of one Cretaceous and 
three Tertiarv decaood crustaceans ( 13 ). Even 
where the mbrphoiogy of the cuticle appears 
well preserved, the original chemical compo- 

B. A. Stankiewicz and D. E. G. Briggs, Biogeochemistry 
Research Centre, Department of Geology, University of 
Bristol, Queen's Road, Bristol BS8 1 RJ, UK. 

gance and to obtain exact closed-form expres- 
sions for collisions. 
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tion of invertebrate cuticles (9. 15). oarticu- . , . . -  
larly in cases in which the sample size is 
limited to a few microerams. Investieation of 
the cuticles of fossil aGhropods fro; 15 sites 
ranging in age from Silurian to Cretaceous 
revealed no trace of the original chemical 
components of chitin (12). The chemical sig- 
nature either (i) was dominated by the n-alk- 
1-ene and n-alkane doublets characteristic of 
highly aliphatic biopolymers or (ii) contained 
a substantial aromatic component including 
alkvlbenzenes and alkvlindenes and relativelv 
abundant sulfur-containing compounds such 
as thio~henes (1 2). . . 

Here we demonstrate that chitin is pre- 
served in the late Olieocene 124.7 million - 
years ago (Ma)] Enspel Fossillagerstatte 
(17) near Bad Marienberg, in the Wester- 
wald, Rheinland-Pfalz, Germany, where 
maar-lake deposits are interbedded with tuff 

Fig. 1. Photomicrographs of (A) the ventral view 
12 of the Oliaocene (24.7 Ma) of Ens~el, western GI 

of a beetle (Coleoptera: Curculionoidea) from level 
srmanv: (B) an SEM image of the cuticle of a modern 

R. P. Evershed and M. B. Flannery, Organic Geochemis- mealworm beetle (~enebrio molitor) that reveals the layeis of cuticle overlapping at different angles; (C 
try Unit, School Of University Of BristOl, Can- an SEM image of afractured edge of cuticle of the specimen illustrated in (A) that shows chitinous fibers; 
tock's Close, Bristol BS8 ITS, UK. 
M, Wuttke, Landesamt fijr Denkmalpflege Rheinland- and D) an SEM image of the shale matrix that contains the fossil insects and reveals that pennate 
Pfalz, Referat Erdgeschichtliche Denkmalpflege, Am diatoms are the dominant constituent. (Images were made with a Cambridge Stereoscan 250 Mk3 SEM 
Obstmarkt 13, D-55126 Mainz, Germany. at 7 to 12 kV after specimens were coated with gold.) 
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