
gets may provide a means of regulating the  
size of arbors without affecting their laminar 
specificity, thereby providing independent 
control over quantitative and qualitative 
aspects of connectivity. Because cadherins 
(10, 1 1 ), VVARs (27) ,  and neurotrophins 
(8, 26) are all expressed in  numerous lam- 
inated portions of the  vertebrate brain, mo- 
lecular mechanisms elucidated in  tectum 
may regulate connectivity elsewhere as 
well. 
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Stochastic Dynamics and Deterministic 
Skeletons: Population Behavior of 

Dungeness Crab 
Kevin Higgins," Alan Hastings, Jacob N. Sarvela, 

Louis W. Botsford 

Ecologists have fiercely debated for many decades whether populations are self-reg- 
ulated by density-dependent biological mechanisms or are controlled by exogenous 
environmental forces. Here, a stochastic mechanistic model is used to show that the 
interaction of these two forces can explain observed large fluctuations in Dungeness crab 
(Cancer magister) numbers. Relatively small environmental perturbations interact with 
realistic nonlinear (density dependent) biological mechanisms, to produce dynamics that 
are similar to observations. This finding has implications throughout population biology, 
suggesting both that the study of deterministic density-dependent models is highly 
problematic and that stochastic models must include biologically relevant nonlinear 
mechanisms. 

D u n g e n e s  crab life-history features are well 
known (1-4) and have been the basis for 
inany mechanistic models of its population 
behavior (5-8). Females extrude up to 2 
million eggs in  the  fall. After hatching in 
winter and pelagic dispersal of larvae in 

K. Hggns  and A. Hastings. D~v~sion of Envronmental 
Studes and insttute of Theoretcai Dynamics, University 
of California, Davis Davs, CA 9561 6, USA. 

spring, juvenile crabs settle near shore in  late 
spring and early summer. Reproduction is 
delaved until crabs reach about 100-min car- 
apack width (about 2 to 3 years of age). 
Adults reoroduce once Der vear and inav do 

L ,  

so repeatedly. Fecundity declines with age 
and is related to inoltine, with molting ~ r o b -  - - L 
ability dropping precipitously at older ages. 
Male and feinale survivorshi~ declines with 
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19). These time-series records show large ~, '2 

amplitude fluctuations w i t h  a cycle per iod 
o f  about 10 years (5 ,  6,  10). There  is gen- 

Females db$f 
Females {;- 
Infertile 

Males 

Males A 

( Harvest ) 

Fig. 1. Determ~n~st~c model skeleton for Dunge- 
ness crab. The model clock starts in December 
(many models In the teraturestart in May) with the 
producton of male and female eggs, M,(t ) and 
F,(t). We assume that dens~ty-dependent pro- 
ductlon of eggs by 3- and 4-year-old females, 
numbered n, is given by the Ricker formulation 
(34), bne-"" (Eq. 6). Density-independent fecun- 
dlty, 6, is fixed at 2 ml ion eggs, the largest blo- 
l og~cay  reasonable value (35), and c controls the 
intensity of denslty dependence. We assume a 
planktonic larval phase (survival, s,) and a young- 
of-Ze-year phase during the flrst year (surv~val, 
Vs,). Survival of young-of-the-year depends on 
the densty of 1 -year-ods (cannibalism coefficent, 
CO), -c;Fit: 1)\'sa (Eq. 5). Survival of I -year-ods 
depends on the density of 2-year-olds (cannibal- 
ism coefficient, c,), eciFzF - ' )  (Eq, 4), The cann- 
baism terms are general and can represent any 
process where the surv~val of one class is depen- 
dent on the densty of another class. Density-in- 
dependent survva of 1 - ,  2-, and 3-year-olds is s,. 
Before age 4 there is no difference In male and 
female numbers. One-, 2-, and 3-year-old males 
are denoted M,(t ) ,  M,(t ) ,  and M,(t ). One-, 2.. 3.. 
and 4-year-old females are denoted F,(t), F,(t). 
F,(t), and F,(t). Reproduction begins at age 3,  
and females beyond age 4 are excluded from the 
model because of their sharply reduced fecundity 
(4). Male vulnerabity to harvest begins at age 4 
(on the bass of the convent~onal clock in other 
studies. males are vulnerable to harvest at age 
3.5), and males remain vulnerable to harvest [har- 
vest rate, h (36)] and natural mortality forever (sur- 
vlval, s,). 

era1 agreement tha t  these fluctuations in 
catch records reflect actual changes in 
abundance o f  Dungeness crab and n o t  just 
changes in f ishing effort ( 1 , 3 ,  1 1 ). 

T h e  potent ia l  for exogenous influences 
o n  this system has been studied. W i n d -  
dr iven surface currents (3, 12) and ocean 
tenlperature (3, 13) are the  e n v i r o i l i n e ~ ~ t a l  
variables best correlated w i t h  catch. F ie ld  
st~ldies have shown tha t  in some loca t i o l~s  
year-to-year var iabi l i ty  in settlement o f  lar- 
vae depends o n  the number  o f  relaxations 
in upwel l ing winds each year (14). In addi- 
t ion,  laboratory c u l t ~ ~ r e  o f  eggs at  h igher 
temperatures increases egg mor ta l i ty  (14). 

Populat ion models may be ~ l l e c h a ~ ~ i s t i c  

(15, 16) or  statistical (1 7 )  or  intermediate 
(18). W e  use biological  knowledge and as- 
su~npt ions about mult ivar iate noise struc- 
ture t o  construct a ~ l lechan is t ic  nlodel  (Fig. 
1). A l t h o u g h  this is a spatially extended 
popu la t ion  (19) connected by  pelagic dis- 
persal o f  larvae, we aqsume that  dynamics 
are local  and may be inodeled b y  a density- 
dependent age-structured model  (1  5,  16) 
w i t h  stochastic forc ing t o  include the im- 
pact o f  rand0111 environmental  processes 
(15-17, 20, 21). 

T h e  approach we use (1  5, 16) incorpo- 
rates the  possibil i ty tha t  the  effect o f  exog- 
enous environmental  forces is similar for  
different age classes (22). With this assump- 

Grays Harbor. Willapa Bay, and 
Columbia River 
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E 
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Fig. 2. One-year-ahead model predctions (3) and Dungeness crab catch data (@) for ports In Wash- 
~ngton, Oregon, and California (ports run north to south) (A to H). Differences between model prediction 
and catch provlde estimates of environmental perturbations. Estimated environmental perturbations are 
much smaller than the amplitude of fluctuatons In crab catch. Initial condtons for model dynamics w I  
be provided by the authors upon request. 
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tion, relative perturbations on each age (23). Stochasticity is assumed to be additive 
class are treated as free parameters, p,, pZ, on a logarithmic scale that corresponds to 
p,, and p4, for age classes I to 4, respectively environmental fluctuations (24). This leads 

1 C w s  and Wtnchester Bays 
5971 E 1 

Sfid '3 L 

0 1 I Astorla and Wanenton I I 
0 

66 - 
c 729, 

18 I=, 
I 

I 1 Tillamwk and Garibaldi 
I Eureka and Crescent CRY 1 

36; ' C I  121 
7 3 , 2 5 7 ,  2422 

/ ' Newpofiand Depoe Bay D 1 
33 6 
1950 2150 2350 2550 2750 2950 1950 2150 2350 2550 2750 2950 

Year 

Fig. 3. Simulated stochastic model dynamics for 1000 years. Simulations use parameter values that 
provided the best f~t to obsetvations and resampled periurbations from tile estimated distribution of 
environmental petfurbations. u(t ) .  In all cases. the stochastic dynamics are highly variable. The heavy 
black line represents the deterministic model dynamics (equilibrium). Both the deterministic and sto- 
chastic dynamics start from the same initial conditions. 

Table 1. Statistics for Dungeness crab model, s,, larval survival rate; s,, p,/p,. p,/p,, and p,/p,, 
juvenile and adult survival rate: s,, harvestable male survival rate; c, coeffi- classes 1 .  2 ,  and 3: and 
cient of density-dependent fecundity; c, and c.. cannibalism coefficenis: by rms. 

to the stochastic model, 

o(t) = ln[catch(t)] - 111 

Environmental perturbations, o ( t ) ,  are esti- 
mated by comparing the predicted catch, 
h[M,(t - l)s, + (catchit - l ) / h ) ( l  - h)s,,l, 
with the observed catch, catchit), in year t 
( E q  1 ) .  The  deterministic model skeletori 
(25) (Eqs. 2 to 6 without stochasticits) is 
defined in Fig. 1. W e  fit the rnodel to 42 
years of highly variable (26) time-series 
data from eight locatio~ls (Fig. 2) by mini- 
mizing the square root of the mean square 
perturbation, rlns (27). Model residuals are 
assumed to be due to en~~ironmental  sto- 
chasticity (15, 16, 20), and the measure- 
ment error is assumed small enough that it 
can be i~nored .  " 

Extremely good rnodel fits to the Dunge- 
ness crab time-series data (Fio. 2 )  indicate , " ,  

that the assu~ned biological mechanisms are 
able to oroduce dynamics consistent with 
empirical observations. Estimated parame- 
ter values (Table 1 )  are all biologically rea- 
sonable and consistent across locations, 
which provides further support for the mod- 
el. In contrast, the exogenous forcing, the 
orocess errors as determined by the fittine 
brocess, do vary from site to site. ~ s t i r n a t e i  
harvest rates are uniformlv hioh for all fits. 
consistent with the broad cinsensus that 
harvest in this fishery is intense (1-3, 6 ,  7, 
28). Furthermore, the model is able to pro- 

relative perturbations (compared to age 4) on age 
h, harvest rate. Goodness of model fit is measured 

Location 

Grays Harbor. Willapa Bay, and Columbia River 
Astoria and Warrenton 
Tilamook and Garibaldi 
Newpori and Depoe Bay 
Coos and Winchester Bays 
Brookings, Gold Beach, and Pot? Orford 
Eureka and Crescent City 
Fori Bragg 
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duce dvnarnics consistent with the highly 
u ,  

variable data at eight different locations, 
spread over 1000 km of coast, \vhich sug- 
gests the model structure is robustly captur- 
ing essential population mechanisms (29). 
In contrast, in all cases the best fitting 
parameter values for the underlying deter- 
ministic skeleton produce equilibrium in 
the absence of environmental perturba- 
tions. That such erratic time-series data 
(26) are generated by density-dependent 
mechanisms that not only are not chaotic, 
but in almost all cases produce a strongly 
stable equilibrium in the absence of exoge- 
nous stoc_hasticity, is surprising. Addition- 
ally, even though the stochastic version of 
the model produces highly variable dynam- 
ics, the dvnarnics are not chaotic (30). , , 

In six 'of the eight time series of resid- 
uals, some oscillatory structure remained 
(31). To determine whether the highly 
variable model dvnamics were an artifact 
of a particular seiuence of random pertur- 
bations, we simulated inodel dynamics by 
resampling from the estimated distribution 
of perturbations, o(t) (Fig. 3) ,  and f o ~ ~ n d  
no difference in dynamics as measured by 
the variability of the dvnamics or bv ex- 
amining the fourier transform of the dy- 
namics. Simulations with decreased vari- 
ance in a(t) produced the same qualitative 
behavior (that is, highly variable dynam- 
ics). Larger values for the residuals (mea- 
sured by rms in Table l )  at southern loca- 
tions are consistent with the observed in- 

have detected possible forcing variables 
(1,  12, 13) that have been further scruti- 
nized by examining both potential nonlin- 
ear effects of the environmental variables 
and density-dependent recruitment (8). 
With the nonlinear lnethods of this study, 
we have shown that relatively small ran- 
dom perturbations, uncorrelated from year 
to year, may lead to large fluctuations with 
a multiyear period, which calls into ques- 
tion the value of using linear correlation 
analysis alone to understand population 
dynamics. That random perturbations can 
have a marked effect on persistence has 
been previously noted (33) without dis- 
cussion of the effects on dvnamics. 
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p's, 

21. B Dennls, P. L. Munholland, J. M. Scott, Ecol. 
Monogr. 61, 115 (1991). 

25 H. Tong, Non-Linear T,me Senes: a Dynam~cal Sys- 
tem Approach (Oxford Unv. Press, Oxford, 1990). 

26. Catch records for Dungeness crab do not vary 
smoothly and show extreme year-to-year variation 
From north to south, the coefficents of varlatlon are 
0.51,0.49,0.47,0.57. 0 52.0,85,0.66. andO.i7for 
the eght time series. The most varlabe tlme seres 
change over almost two orders of magnitude \see 
(70) for deta~ls]. 

27 

A very complex bifurcation structure for models of 
this type (70) leads to a difficult fttlng (optlmizaton) 
problem, which we have solved w~th a novel ap- 
proach Our method of negotiating the goodness o i  
f~ t  surface is based on a hybrid of smulated annea- 
ing pV L Goffe. G. D Ferrier, J Rogers. J. Econo- 
metrics 60, 65 (1994)], Powell's direct~on method 
[W. H Press, S A. Teukolsky, W. T. Vetterl~ng, B P. 
Fannery. Numencal Recipes in C: theA!?ofScientli,c 
Computing (Cambridge Univ. Press, Cambrdge, ed. 
2. 1992)l. and a sophisticated step-s~ze adjuster that 
we designed. 

28. L W. Botsford. Can J. Fish. Aquat. Sci. 38. 1295 
(1981). 

29. We cannot test a alternative models, wh~ch is a 
drawbackof nonlinearversus linear modelng. We do 
strongly suspect that the model framework IS not 
crtcal to the main result. 

30. We calculated largest Lyapunov exponents for the 
stochastc model dynamcs on the bas~s of expan- 
sion and contraction of an arbtrary perturbaton vec- 
tor usng a Jacobian method. At successve loca- 
tons on the stochastic attractor, the Jacobian was 
applled to the same renormal~zed perturbation vec- 
tor. Chaotic attractors have a direction along which 
th~svector grows (that IS, a positve largest Lyapunov 
exponent) The largest Lyapunov exponents for the 
best-f~tting model at each location are as follows 
-0.13, Grays Harbor, Wlllapa Bay, and Columbia 
R~ver, -0 39, Astorla and Warrenton, -0 L3, 
Tilamook and Garibaldi, -0 31, Newport and De- 
poe Bay; -036,  Coos and Winchester Bays; 
-0 25, Brooklngs, Gold Beach. and Port Orford, 
-0 057, Eureka and Crescent Clty, -0 30, Fort 
Bragg 

31 Oceanographc varlabes n thls system exhblt a pro- 
nounced correlation structure (that IS, El Nitio). As- 
sumng that oceanographic variables (for example. 
sea temperature) that impact boogical processes (for 
example, development) are correlated, a model 
based only on biology should not be able to remove all 
of tne determlnlsm from the data In fact, if the model 
left behnd pure white noise, thls would imply that 
bologcal mechanisms were accounting for the cor- 
reatlon structure of physical varables. 

32. For each locaton we characterzed simulated mod- 
el dynamics with the coeffcient of varation over the 
range of estimated values for s, and s,. For exam- 
ple in Table 1, s, ranges between 0 48 and 0.95 
over the elght locations In ths  range for s,, all 
models had smulated dynamics with very high 
variab~lity True confdence ~ntervals (by bootstrap- 
ping) for ths  10-parameter highly nonlnear model 
would requlre thousands of days of computer time, 
which is clearly not feasible So we confirmed the 
qualitative behavior over a reasonable range of a 
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subset of the parameters. clarity, but b could be absorbed into s, wlthout 
33. S. Tuljapurkar. Popuiation Dynamics ln Variable En- consequence 

vironments (Spr~nger-Verlag, New York, 1990); P L 36 We assume harvest rate, h, is a simple proporiion 
Chesson, in Community Ecology. J. Dlamond and T of the legally hawestable males. More reas t~c  
J. Case, Eds (Harper & Row, New York. 1986), pp would be some functional form for h that depends 
2LO-255 on the dens~ty of harvestable males Effort data 

3.4 W E. Ricker, J. Fish Res Board Can 11, 559 were not used because there does not seem to be 
(1 954) any reliable way to deal with long-term changes In 

35, b and s, are displayed separately for bioogcal effort 

37 We thank J E Kezer and the Institute of Theoretcal 
Dynam~cs for prov~d~ng computer suppori, D. G 
Hankn for helpful dscussions on Dungeness crab 
life-hstory characterstcs: and R F. Costantno, B. 
Denns. S Elner, J Quinn, and two anonymous re- 
vewers for helpful dscussions and comments on the 
manuscript. 
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