
the effect of the specific PI 3-kinase inhibi- 
tor wortmannin on STAT3 phosphorylation 
(Fig. 5). Cells were pretreated with various 
concentratlons of wortmannin before addi- 
tion of IFN-a and lysed. Proteins from ly- 
sates were precipitated with anti-pTyr and 
blotted with anti-STAT3 or anti-TYK2. 
Wortmannin produced a dose-dependent re- 
duction in the slowly migrating band of 
STAT3, which is phosphorylated on both 
serine and tyrosine (median inhibitory con- 
centration ICjo .-. 3 nM). This was not 
attributable to inhibition of tyrosine phos- 
phorylation events, because wortmannin had 
little or no effect on phosphorylation of the 
faster ' migrating band, which contains 
STAT3 solely phosphorylated on tyrosine, 
or of the TYK2 JAK kinase. Moreover, n7ort- 
mannin (10 nM, 30 min) produced a 
-50% reduction in ISG54 gene induc- 
tion, consistent with the finding that 
serine phosphorylation of STAT3 is re- 
quired for maximal activation of transcrip- 
tion (16) .  These findings indicate a role 
for the PI 3-kinase pathway in the serine 
phosphorylation of STAT3.  It remains to 
be established whether PI 3-kinase medi- 
ates these 'events directly or indirectly 
through the IFN-a-activated PKCs, PKCG 
and PKCE (14, 17, 18, 22, 28). 

Our results indicate that PI 3-kinase is 
coupled to the IFN-R through STAT3. Upon 
Iigand-dependent tyrosine phosphorylation, 
residues Tyr52' and Tyr538 of IFNARl recruit 
STAT3 to the receptor; then, STAT3 itself 
undergoes tyrosine phosphorylation at resi- 
dues Tyr6j6 and Tyr705. Because both SH2 
domains of p85 are required for the strongest 
interaction with the IFNARl signaling com- 
plex, two tyrosine-phosphorylated STAT3 
molecules may be needed to dock p85 effi- 
ciently. Once docked, p85 can also undergo 
IFN-dependent tyrosine phosphorylation. Ac- 
tivated PI 3-kinase can then promote the 
serine phosphorylation of STAT3, which is 
critical for the formation of stable STAT3 
homodimers or STAT3-STAT1 heterodimers 
(1 6 ,  29). These data add an important new 
facet to the role of STAT proteins in cellular 
signal transduction pathways. 
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Role of the Major Antigen of Mycobacterium 
tuberculosis in Cell Wall Biogenesis 

John T. Belisle," Varalakshmi D. Vissa, Todd Sievert, 
Kuni Takayama, Patrick J. Brennan, Gurdyal S. Besra 

The dominant exported proteins and protective antigens of Mycobacterium tuberculosis 
are a triad of related gene products called the antigen 85 (Ag85) complex. Each has also 
been implicated in disease pathogenesis through its fibronectin-binding capacities. A 
carboxylesterase domain was found within the amino acid sequences of Ag85A, B, and 
C, and each protein acted as a mycolyltransferase involved in the final stages of my- 
cobacterial cell wall assembly, as shown by direct enzyme assay and site-directed 
mutagenesis. Furthermore, the use of an antagonist (6-azido-6-deoxy-a,al-trehalose) of 
this activity demonstrates that these proteins are essential and potential targets for new 
antimycobacterial drugs. 

Mycobacterium tuberculosis possesses a cell 
wall dominated by covalently linked mycolic 
acids, D-arabino-D-galactan, and peptidogly- 
can (mAGP), the mycolic acids of whlch are 
complemented by glycolipids such as a , a l -  
trehalose dimycolate (TDM, cord factor) and 
apt-trehalose monomycolate (TMM) ( 1 ). 
This mycolic acid-based permeability barrier 
shields the organism from environmental 
stress and contributes to disease persistence 
and the refractoriness of M. tuberculosis to 
many antibiotics (1 ) .  The success of chemo- 
therapeutic agents such as isoniazid and 
ethambutol that specifically inhibit cell wall 
biogenesis confirms the necessity of this struc- 
ture for bacterial survival (2). The biosyn- 
thetic pathways leading to formation of the 
key mycobacterial cell wall components, ar- 
abinogalactan (AG) and mycolic acids, are 

therefore desirable targets for the rational de- 
sign of new antituberculosis agents (3, 4). 
However, there IS little information on indi- 
vidual enzymes (5, 6) or genes (7) involved in 
these unique processes. 

To  define the enzymes and genes respon- 
sible for mycolic acid deposition, we devel- 
oped a mycolyltransferase assay in which non- 
radioactive mycolic acids from lipid-soluble 
TMM were transesterified to radioactive wa- 
ter-soluble [14C]a,a'-trehalose, resulting in 
the formation of lipid-soluble [14C]TMM and 
[14C]TDM (6). The enzyme responsible for 
this exchange from M. smegmatis was purified 
to near homogeneity by conventional means 
16). and the transferase activitv, assessed in , , , , 
terms of product formation (8), was deter- 
mined to be 1.89 x lo4 cum m f '  orotein " 

min-'. Two-dimensional polyacrylamide gel - 
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electrophoresis (2D PAGE) (9) of this en- 
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Fig. 1. Mycolyltransferase activity of purified M. 
tuberculosis Ag85 proteins. (A) Polyactylamide 
gel electrophoresis (30) of Ag85 proteins purified 
by hydrophobic interaction chromatography. 
Lane 1, molecular size standards; lane 2, purified 
Ag85B; lane 3, Ag85C; and lane 4, Ag85A. (B) 
Protein immunoblot analysis of the purified Ag85 
products with monoclonal antibody HM-27 as 
the probe. Lane designation same as in (A). (C) 
Specific mycolyltransferase activities of the 40% 
(NHJ,SO, precipitate of CFP and purified Ag85A, 
B, and C. The control assay contained the 
(NH,),SO,-precipitated proteins from CFP inacti- 
vated with CHCI,. All enzymatic assays were done 
as described (8). 

the A, B, and C components of M. tuberculosis 
Ag85 (FSRPGLPVEY) (I I). Protein immu- 
noblot analysis of the partially purified trans- 
ferase from M. smegmatis showed that the 31- 
and 34-kD proteins were reactive to a mono- 
clonal antibody (HYT-27) specific for Ag85 
(1 2). These observations implicated members 
of the Ag85 complex in the exchange of 
mycolic acids within the mycobacterial cell 
wall. 

The three closely related proteins (A, B, 
and C) of the M. tuberculosis Ag85 have been 
extensivelv characterized (1 3 ). Their fi- 
bronectin-binding capacities have led to con- 
cepts of involvement in complement recep- 
tor-mediated phagocytosis of M. tuberculosis 
(14) and the designation of their respective 
genes as &A, &B, and fbQC (1 5). However, 
the presence of Ag85 homologs in other non- 
pathogenic Mycobacterium spp. and in Curyne- 
bacterium glutamicum (1 3, 16) suggested a 
more fundamental, physiological role for these 
proteins. Thus, the individual components of 
the M. tuberculosis Ag85 complex were inves- 

A 
Ag85A 155 HVKPTGSAVVGLSMAASSA LTLA 178 

Ag85B 153 AVKPTGSAAIGLSMAGSSAMILA 176 

Ag85C 157 GVSPTGNAAVGLSMSGGSALILA 179 

CarbestD 151 PVDPQRMSIFGHSMGGHGALICA I76 
*.. . . +  . . . . . .  

6 

Fig. 2. Carboxylesterase consensus sequence 
within the Ag85A, B, and C proteins and its site- 
directed mutagenesis. (A) Alignment of partial ami- 
no acid sequences of the M. tuberculosis Ag85A, 
B, C, and the human carboxylesterase D by the 
Clustal program (31). Identical amino acids are in- 
dicated by an asterisk, and well-consewed amino 
acids by a dot. The carboxylesterase consensus 
sequence is underlined. (B) Partial sequences of 
the cloned fbpC and the mutated fbpC leaderless 
gene fragments. The boxed region shows the mu- 
tation to nucleotide 373 resulting in a SerlZ5 to Ala 
mutation. (C) Polyacrylamide gel electrophoresis of 
whole cell lysates. Lane 1, molecular size stan- 
dards; lane 2, E. colLpET23b vector control; lane 3, 
E. co1i:pCSBS noninduced; lane 4, E. co1i:pCSBS 
IPTG-induced; lane 5, E. co1i:pCSBSsa nonin- 
duced; and lane 6, E. co1i:pCSBSsa IPTG-induced. 
Abbreviations for the amino acid residues are as 
follows: A, Ala; C, Cys; D, Asp; F, Phe; G, Gly; H, 
His; I ,  Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, 
Gln; R, Arg; S, Ser; T, Thr; and V, Val. 

tigated for their role in TMM and TDM bio- 
genesis. Culture filtrate proteins (CFPs), the 
source of the Ag85 components in the con- 
text of their antigenicity (13), from M. tuber- 
culosis H37Ra were harvested from cells in 
mid-logarithmic growth (1 7) and precipitated 
with 40% saturated (NH4),S04, yielding a 
fraction with substantial transferase activity 
(Fig. 1) and containing the full complement 
of Ag85 components as confirmed by protein 
immunoblot analysis. Full purification of the 
individual Ag85 proteins was achieved by hy- 
drophobic interaction chromatography (Fig. 
1A) (18). Protein immunoblot analysis veri- 
fied that all were members of the Ag85 com- 
plex (Fig 1B). Analysis by 2D PAGE (9) and 
silver nitrate staining (19) confirmed their 
purity and revealed migration patterns consis- 
tent with those previously reported (20). My- 
colyltransferase activity measurement (8) of 
the individual proteins revealed that the 
Ag85A and Ag85C components had similar 
specific activities approximately six to eight 

Fig. 3. Thin-layer chromatography and autoradiog- 
raphy of organic extractable products generated 
by the mycolyltransferase assay. TLC was done in 
a solvent system of CHCI,:CH,OH:NH,OH 
(80:20:2) with silica gel TLC plates (Merck). (A) 
TDM and TMM standards were visualized by 
spraying with 10% a-naphthol in 5% sulfuric acid in 
ethanol and heating at 110°C. (B) The CHCI, or- 
ganic extractable material from the mycolyltrans- 
ferase reactions, in which the source of enzyme 
was as follows: lane 1, the 40% (NHJ,SO, precip- 
itate of CFP; lane 2, Ag85A; lane 3, Ag85B; lane 4, 
Ag85C; lane 5, a mixture of Ag85A, B, and C; lane 
6, lysate from E. coli:pET23b; lane 7, lysate from E. 
co1i:pCSBS; and lane 8, lysate from E. coli: 
pCSB9sa. The CHCI, extract from each reaction 
mixture was dried and suspended in 100 pI of 
CHCI,:CH,OH (2 : 1) of which 50 p1 was resolved 
by TLC. Products of these reactions were visual- 
ized by autoradiography. 

times greater than that of the initial prepara- 
tion but that the specific activity of the 
Ag85B component was only about 20% of 
that for Ag85C (Fig. 1C). 

Transesterification of mycolic acids as cat- 
alyzed by the Ag85 proteins dictates the ne- 
cessity of carboxylesterase activity. Other fatty 
acyl transferases and lipases have a conserved 
carboxylesterase consensus sequence (Gly- 
Xaa-Ser-Xaa-Gly) (21), and x-ray crystallog- 
raphy of several carboxylesterases has defined 
the Ser residue as the active site of a catalytic 
triad consisting of Ser, Asp/Glu, and His (21 ). 
A search for functional domains within 
Ag85A, B, and C by amino acid sequence 
homology revealed a region in each, defined 
by amino acids 117 to 220 of Ag85A, having 
34% homology to a 99-residue internal frag- 
ment of human carboxylesterase D (22) (Fig. 
2A). 

To confirm that the Ser residue of this 
putative active site was essential for transes- 
terification of mycolic acids, a fragment of 
fbQC encoding the leaderless M. tuberculosis 
Ag85C was obtained by polymerase chain 
reaction (PCR) amplification and ligated into 
the E s c h c h  coli expression vector pET23b, 
resulting in the recombinant plasmid pCSB9 
(23). Site-directed mutagenesis of this cloned 
fbeC gene fragment resulted in the replace- 
ment of Ser125 with Ala (Fig. 2B); this plas- 
mid was designated pCSB9sa (23). Transfor- 
mation of E. coli BLZl(DE3)pLysS with the 
pCSB9 and pCSB9sa, and induction with iso- 
propyl-P-D-thiogalactopyranoside (IPTG) re- 
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Fig. 4. Two-dimensional 
autoradiographic TLC of 
[I ,2-14C]acetate pulse- 
labeled cells of M. aurum 
A+ in the absence (A) 
and presence (B) of ADT. 
TLC plates were devel- 
oped in the first dimen- 
sion with CHCI,:CH,OH: 

kg 
NH40H (80:26:2) and in the second dimension with CHCI,:CH,COOH:CH,0H:H20 (50:60:2.5:3). 
Autoradiograms were obtained after exposure to Kodak X-Omat film at -70°C for 12 hours. 

sulted in the overproduction of a 32-kD pro- cell growth-suggests that mycolate transfer 
tein by each recombinant clone, both of or deposition, or both, are essential for bacte- 
which reacted with the HYT-27 monoclonal rial viability, and the enzymes involved pro- 
antibody (Fig. 2C). Assay of whole cell lysates vide essential targets for the development of a 
from these recombinant clones and E. coli: new class of antimycobacterial chemothera- 
pET23b vector control demonstrated that peutic agents directed against M. tuberculosis. 
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