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Both subjective and electroencephalographic arousal diminish as a function of the
duration of prior wakefulness. Data reported here suggest that the major criteria for a
neural sleep factor mediating the somnogenic effects of prolonged wakefulness are
satisfied by adenosine, a neuromodulator whose extracellular concentration increases
with brain metabolism and which, in vitro, inhibits basal forebrain cholinergic neurons.
In vivo microdialysis measurements in freely behaving cats showed that adenosine
extracellular concentrations in the basal forebrain cholinergic region increased during
spontaneous wakefulness as contrasted with slow wave sleep; exhibited progressive
increases during sustained, prolonged wakefulness; and declined slowly during recovery
sleep. Furthermore, the sleep-wakefulness profile occurring after prolonged wakefulness
was mimicked by increased extracellular adenosine induced by microdialysis perfusion
of an adenosine transport inhibitor in the cholinergic basal forebrain but not by perfusion

in a control noncholinergic region.

Abundant experimental evidence supports
the commonsense notion that prolonged
wakefulness decreases the degree of arousal,
which is usually measured as electroen-
cephalographic activation (EEG arousal).
Both the propensity to sleep and the inten-
sity of delta EEG waves upon falling asleep
have been demonstrated to be proportional
to the duration of prior wakefulness (I).
What might be the neural mediator of this
effect of prior wakefulness? Our laboratory
has provided evidence that the basal fore-
brain and mesopontine cholinergic neurons
whose discharge activity plays an integral
role in EEG arousal (2) are under the tonic
inhibitory control of endogenous adeno-
sine, an inhibition that is mediated postsyn-
aptically by an inwardly rectifying potassi-
um conductance and by an inhibition of the
hyperpolarization-activated current  (3).
Adenosine is of particular interest as a pu-
tative sleep-wakefulness neuromodulator
(4) because (i) the production and concen-
tration of adenosine in the extracellular
space have been linked to neuronal meta-
bolic activity (5); (ii) neural metabolism is
much greater during wakefulness (W) than
during delta slow wave sleep (SWS) (6);
and (iii) caffeine and theophylline are pow-
erful blockers of electrophysiologically rele-
vant adenosine receptors, promoting both
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subjectively and EEG-defined arousal while
suppressing recovery sleep after deprivation
(7). Our laboratory has recently demon-
strated that microdialysis perfusion of aden-
osine in the cholinergic basal forebrain and
the mesopontine cholinergic nuclei reduces
wakefulness and EEG arousal (8).
Although the preceding evidence is con-
sistent with adenosine as a neural sleep factor
mediating the somnogenic effects of pro-
longed EEG arousal and wakefulness, key
questions relevant to a demonstration of this
role have remained unaddressed. (i) Are brain
extracellular adenosine concentrations higher
in spontaneous W than in SWS? (ii) Do
adenosine concentrations increase with in-
creasing duration of W and then decline slow-
ly as recovery sleep occurs after W? (iii) Do
pharmacological manipulations increasing
brain adenosine concentrations produce
changes in sleep and wakefulness that mimic
those seen during recovery from prolonged
wakefulness? (iv) Are adenosine sleep-wake-
fulness effects mediated selectively by neu-
rons implicated in EEG arousal, such as
cholinergic neurons, rather than stemming
from widespread neuronal populations,
each with relatively similar influence?
Under pentobarbital anesthesia, cats
were implanted with electrodes for record-
ing EEG, electromyogram, electro-oculo-
gram, and ponto-geniculo-occipital waves
for determination of behavioral state (9)
and with guide cannulae for insertion of
microdialysis probes (10). Probes were tar-
geted to the cholinergic basal forebrain and,
as a control region, to the thalamic ven-
troanterior/ventrolateral (VA/VL) com-
plex, which was selected for contrast be-
cause it is not cholinergic and, as a relay
nucleus, does not have cortical projections
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as widespread as those of the basal forebrain
cholinergic neurons (11).

Brain extracellular adenosine concentra-
tions were measured in the basal forebrain and
the thalamus with the use of high-perfor-
mance liquid chromatography and ultraviolet

UV) detection from samples collected by in

vivo microdialysis (Fig. 1A) (12). Adenosine
concentrations in consecutive samples over
one complete sleep cycle [that is, a cycle
containing W, SWS, rapid eye movement
(REM) sleep, and W again at the end] are
shown in Fig. 1B. The initial cluster of suc-
cessive W episodes has consistently high val-
ues, whereas the following cluster of sleep
states has generally much lower SWS values,
especially as SWS becomes more consolidat-
ed. In some experiments (Fig. 1B), samples
were collected during REM sleep episodes,
and the adenosine concentrations measured
appeared similar to the concentrations seen in
adjacent SWS samples. However, we did not
pursue the analysis of REM sleep samples,
because the focus of the present study was not
on REM sleep. Furthermore, it was relatively
difficult to get pure REM samples, and there
was some evidence that the short-duration
REM episodes did not allow full equilibrium
of adenosine with the extracellular fluid. As
predicted, adenosine concentrations were less
in SWS than in W, being significantly re-
duced by 21% in both regions [paired ¢ test,
t(4) = 6.53 and P < 0.01 for the basal fore-
brain and t(4) = 2.80 and P < 0.05 for the
thalamus]. The grand mean (+SEM) of aden-
osine concentrations was 30.6 * 5.1 nM dur-
ing W versus 24.1 = 4.4 nM during SWS
(13).

To study the effect of prolonged wakeful-
ness on brain extracellular adenosine concen-
trations, we atraumatically kept the cats
awake by playing with or handling them. Dur-
ing the 6-hour waking period and the 3-hour
subsequent recovery sleep period, EEG activ-
ity was continuously monitored, and three
10-min microdialysis samples were analyzed
per hour from the basal forebrain site. The
mean adenosine concentrations for six ani-
mals for each hour of the experiment were
expressed as a percentage of the second-hour
values (adenosine concentration at 2 hours
was 30.0 £ 9.5 nM) (Fig. 2). As predicted,
during the extended waking period, the extra-
cellular adenosine concentration increased
progressively with increasing duration of wak-
ing, reaching, at 6 hours, about twice that
(589 + 15.7 nM) seen at the onset of the
experiment (Fig. 2, P < 0.05). During the
3-hour recovery period, adenosine declined
slowly, and, at the end of the 3-hour recording
window, it still had not declined to the values
at the experiment’s onset, although values
approximated the baseline value in one cat
that was recorded for 6 hours of recovery
sleep.
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Fig. 1. Extracellular p
adenosine concentra-

tions during spontane- |
ous wakefulness and ‘ |
sleep. (A) Chromato-
grams of the adenosine
reference standard (left) J I
and the basal forebrain
microdialysis sample
(right), both of which
show peaks (arrows) at !
8-min retention time. (B)
Adenosine concentra-
tions in 10-min consec-
utive samples from an
individual microdialysis
probe in the basal fore-
brain. Labels indicate
the predominant behav-
ioral state: W, wakeful-
ness; S, slow wave
sleep; and R, REM
sleep. (C) Coronal sche-
matic of the basal fore-
brain showing the sites
of the tips of the six
probes used for the pro-
longed wakefulness and
NBTI perfusion experi-
ments. All sites are
mapped onto this one
section, including homo-

1 pmol Sample

topic mapping for contralateral sites. The most dorsal
site is that shown in the photomicrograph in (D). AC,
anterior commissure; CA, caudate; IC, internal cap-
sule; OC, optic chiasm; Sl, substantia innominata; V3,
third ventricle. (D) Photomicrograph showing choline
acetyltransferase—positive (ChAT+) neurons (dark
spots) surrounding a probe tip site (top); this illustra-
tion was selected because the relatively superficial
location of the tip in the substantia innominata allows

clear visualization of ChAT+ neurons.

We next addressed the question of
whether there was site specificity for adeno-
sine effects on sleep and wakefulness. To
achieve local increases in adenosine that
would allow comparison of the sleep-wake-
fulness effects of elevated adenosine in the
basal forebrain and in the thalamus, we used
unilateral microdialysis perfusion of the
adenosine transport inhibitor S-(4-nitroben-
zyl)-6-thioinosine (NBTI, 1 pM) (14), in
the basal forebrain and thalamus. NBTI in-
creased adenosine concentrations about
equally (to about twice the control values) in
both the basal forebrain and thalamus (Fig.
3A). Despite the similar NBTI-induced in-
creases in adenosine in the basal forebrain
and thalamus, only the adenosine increases
in the basal forebrain induced a decrease in
wakefulness and an increase in SWS (Fig.
3B). Similarly, a power spectral analysis of
the EEG revealed that the relative power in
the delta band (0.3 to 4 Hz) was increased
and the relative power in the gamma band
was decreased after NBTI infusion in the
basal forebrain but not in the thalamus (15)
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(Fig. 3C). NBTI perfusion in the basal fore-
brain also increased REM sleep, a finding
similar to the effects of microdialysis perfu-
sion of adenosine (8) (Fig. 3B).

Our final analysis examined how closely
the increase of basal forebrain adenosine con-
centrations by NBTI mimicked the sleep-
wakefulness changes associated with the in-
creased basal forebrain adenosine concentra-
tions caused by prolonged wakefulness. Pro-
longed wakefulness and NBTI infusion in the
basal forebrain induced adenosine increases in
the basal forebrain of almost the same magni-
tude, which were slightly more than twice the
control values (16) (Figs. 2 and 3A). We
noted that this congruence of adenosine con-
centrations afforded a useful opportunity (i) to
determine if the same increase in adenosine,
whether from NBTI or prolonged wakeful-
ness, produced similar sleep-wakefulness
changes, a finding that would be compatible
with adenosine’s acting as a sleep factor mod-
ulating the somnogenic effects of prolonged
wakefulness, and (ii) to determine how closely
a local basal forebrain increase in adenosine
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Fig. 2. Prolonged wakefulness and recovery
sleep. Mean extracellular adenosine values in-
creased in the basal forebrain during 6 hours of
prolonged wakefulness [0900 to 1500; repeated
measures of the analysis of variance (ANOVA) be-
tween treatments gave values of F(8, 5) = 7.0 and
P < 0.0001, and the paired t test between the
second and the last hour of wakefulness gave
values of t(5) = 3.14 and P < 0.05]. The adeno-
sine values decreased in the subsequent 3 hours
of spontaneous recovery sleep (n = 6). Values are
normalized relative to the second hour of depriva-
tion (due to technical problems, three first-hour
values were missing).

produced the same sleep-wakefulness effects
as the presumptively global adenosine increas-
es induced by deprivation, thus allowing an
estimate of the potency of local, unilateral,
basal forebrain changes. Both prolonged
wakefulness and NBTI infusion in the basal
forebrain produced the same pattern of sleep-
wakefulness changes, with a reduction in
wakefulness and an increase in SWS (Fig.
3D). Power spectral analysis showed that both
prolonged wakefulness and NBTI infusion,
compared with control values of spontaneous
sleep-wakefulness states with artificial cere-
brospinal fluid (ACSF) perfusion, produced
the same pattern of relative power changes, as
discussed in the previous paragraph (17).
What might be the mechanism of the
observed changes in extracellular concen-
trations of adenosine that occur in associa-
tion with sleep-wakefulness changes?
Mechanisms that influence extracellular
adenosine concentrations include modula-
tion of adenosine anabolic and catabolic
enzyme activity and adenosine transport
rate constants or activities (18). For exam-
ple, increases in metabolic activity during
wakefulness could increase intracellular
adenosine concentrations and, by altering
the transmembrane adenosine gradient, re-
duce or even reverse the direction of the
inward diffusion of adenosine via its facili-
tated nucleoside transporters (19). Similar
adenosine increases may occur in other cen-
tral nervous system regions, and diurnal
variations of adenosine concentrations in
the frontal cortex and hippocampus have
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Fig. 3. Effects of local perfusion of A
the adenosine transport inhibitor
NBTI (1 wM). (A) Microdialysis perfu-
sion of NBTI increases adenosine
concentrations in both the basal fore-

brain (paired t test, {(5) = 4.79and P = 550 _|
< 0.01) and the thalamus (paired t £
test, t(4) = 3.92 and P < 0.05) by § 200
about twofold (the means of the last ;ﬁ 150
three samples before and the means g
of the first three samples after onset & 100
of NBTI perfusion are compared). (B) 2
NBT! administration causes sleep- § 50

wakefulness changes in the basal
forebrain (left panel) but not in the VA/
VL thalamus (right panel). In the basal
forebrain, the paired t test gave val-

ues of t(5) = 3.47 and P < 0.05 for waking, t(5) = 3.78 and P < 0.05 for C
SWS, and t(5) = 2.76 and P < 0.05 for REM sleep. Changes in the
thalamus are P = NS for all states. The ordinate shows the minutes spent
in each state during the 3-hour recording period. (C) NBTI causes changes
in the power spectrum when administered in the basal forebrain but not in
the VA/VL thalamus. The relative power is increased in the delta band (0.3
to 4 Hz) and decreased in the gamma band (35 to 55 Hz) with NBTI infusion
in the basal forebrain (P < 0.04; nonparametric Wilcoxon tests were used
because of nonnormality of data) but is unchanged with NBTl infusion in the
thalamus. (D) Comparison of the effects of prolonged wakefulness and
NBTI perfusion in the basal forebrain on the percent of time spent in each
behavioral state. During both the NBTI treatment and the recovery sleep
conditions, SWS was increased as compared with control sleep [40 and
50%, respectively; n = 5; repeated measures of ANOVA between treat-
ments gave values of F(2, 4) = 5.92 and P < 0.05], and this increase in
SWS did not differ between the NBTI and recovery sleep conditions (post
hoc Neuman Keul). Wakefulness was decreased in both experimental con-
ditions as compared to control sleep [45 and 50%,
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respectively; repeated

measures of ANOVA between treatments gave values of F(2, 4) = 9.41 and
P < 0.01], whereas the two experimental conditions did not differ from each other. REM sleep in the NBTI-treated and recovery sleep groups had similar

percentage increases (65 and 50%).

indeed been reported, although these stud-
ies did not measure behavioral state-related
changes (20). We suggest that adenosine’s
powerful state-altering effects in the cholin-
ergic basal forebrain region occur primarily
because of the cholinergic neurons’ wide-
spread and strategic efferent targets in the
thalamic and cortical systems that are im-
portant for the control of EEG arousal (21).
Increased adenosine concentrations in the
cholinergic basal forebrain zone would thus
decrease EEG arousal, increase drowsiness,
and promote EEG delta wave activity dur-
ing subsequent sleep. We suggest that ex-
tracellular adenosine concentrations de-
crease in SWS because of the reduced met-
abolic activity of sleep, especially in delta
wave sleep, when cholinergic neurons are
relatively quiescent. This postulate is con-
gruent with the observed declining expo-
nential time course of delta wave activity
over a night’s sleep (1).

Taken together, these results suggest
that adenosine is a physiological sleep fac-
tor that mediates the somnogenic effects of
prior wakefulness. The duration and depth
of sleep after wakefulness appear to be pro-
foundly modulated by the elevated concen-
trations of adenosine.
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As a step toward understanding the complex differences between normal and cancer
cells in humans, gene expression patterns were examined in gastrointestinal tumors.
More than 300,000 transcripts derived from at least 45,000 different genes were ana-
lyzed. Although extensive similarity was noted between the expression profiles, more
than 500 transcripts that were expressed at significantly different levels in normal and
neoplastic cells were identified. These data provide insight into the extent of expression
differences underlying malignancy and reveal genes that may prove useful as diagnostic

or prognostic markers.

Much of cancer research over the past 50
years has been devoted to analyses of genes
that are expressed differently in tumor cells
as compared with their normal counter-
parts. Although hundreds of studies have
pointed out differences in the expression of
one or a few genes, no comprehensive study
of gene expression in cancer cells has been
reported. It is therefore not known how
many genes are expressed differentially in
tumor versus normal cells, whether the bulk
of these differences are cell-autonomous

rather than dependent on the tumor micro-
environment, and whether most differences
are cell type-specific or tumor-specific.
Technological advances have made it pos-
sible to answer such questions through si-
multaneous analysis of the expression pat-
terns of thousands of genes (I, 2). In this
study, using normal and neoplastic gastro-
intestinal tissue as a prototype, we analyzed
global profiles of gene expression in human
cancer cells.

We used the recently developed method
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