at the docking site in association with the
transport vesicle (13, 27), renders the t-
SNARE competent for v-SNARE interac-
tion. The interaction of Yptlp with Sed5p
is transient, and after, or perhaps concom-
itant with, its dissociation the activated
Sed5p engages the v-SNAREs, resulting in
an assembled v/t-SNARE complex. Secl7p
and Secl8p (SNAP and NSF) can then
interact with the assembled complex and
catalyze disassembly (7), allowing mem-
brane fusion to occur.
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Promoter Recognition As Measured by Binding
of Polymerase to Nontemplate Strand
Oligonucleotide

M. T. Marr and J. W. Roberts

In transcription initiation, the DNA strands must be separated to expose the template to
RNA polymerase. As the closed initiation complex is converted to an open one, specific
protein-DNA interactions involving bases of the nontemplate strand form and stabilize
the promoter complex in the region of unwinding. Specific interaction between RNA
polymerase and the promoter in Escherichia coli was detected and quantified as the
binding affinity of nontemplate oligonucleotide sequences. The RNA polymerase subunit
sigma factor 70 contacted the bases of the nontemplate DNA strand through its con-
served region 2; a mutation that affected promoter function altered the binding affinity

of the oligonucleotide to the enzyme.

Escherichia coli RNA polymerase exists in
two forms (1): a core enzyme (E) that con-
sists of subunits BR’a, and is sufficient for
elongation, and a holoenzyme (Eg™®) that
includes E and a sigma polypeptide required
for specific initiation of transcription— usu-
ally the sigma factor 70 (¢7°). The holoen-
zyme recognizes primarily two hexameric

Section of Biochemistry, Molecular and Cell Biology, Bio-
technology Building, Cornell University, lthaca, NY
14853, USA.

sequences centered at —10 and —33, with
+1 being the start of transcription; the —10
element is included in the region of initial
promoter opening. The specificity for pro-
moter recognition is carried by o', which
can bind to double-stranded promoter
DNA (2). It is likely, however, that Eg™
mediates promoter opening.

Eo’°-DNA interactions that form and
stabilize the open-promoter complex in
the region of unwinding involve primarily
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Fig. 1. EMSA for oligo binding. (A) Sequences of
oligos C, A, M, and T are shown with the —10
element in larger letters. (B) RNA polymerase core
(E) or holoenzyme (Eo"°) was assayed for its ability
to bind end-labeled oligos.
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Fig. 2. Equilibrium competition between labeled
oligo C and unlabeled oligo A (triangles), M
(squares), or C (circles) for binding to RNA poly-
merase holoenzyme. Percentage bound is plotted
as a function of competitor oligo per RNA poly-
merase. Open symbols designate Ea7° and filled
symbols designate Ec"®q,57,-

the bases of the nontemplate DNA strand
and not those of the template strand (3,
4). We used an electrophoretic mobility-
shift assay (EMSA) (5) to investigate the
specific binding of holoenzyme (2, 6-9) to
small segments of single-stranded DNA
that contain the —10 nontemplate strand
promoter sequence. A 19-base oligonucle-
otide (oligo) (10, 1) containing variants
of the —10 element of the N\ late gene
promoter Pp. was used as the single-
stranded binding species (Fig. 1A). The \
sequences were chosen as a naturally oc-
curring context for the different —10 hex-
amers. The nontemplate sequence of Py,
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from —18 to +1 was modified in the —10
region in three ways (Fig. 1A). Oligo C
contained the nontemplate consensus
TATAAT hexamer, whereas oligo A con-
tained nucleotides rarely found at each
position in the —10 hexamer (12); oligo
M contained a T to C mutation at the
—12 position, a strong down mutation in
many promoters (13). Oligo T, the com-
plement of oligo C (Fig. 1A), was used to
determine possible interaction of template
strand with RNA polymerase.

Eo’® bound oligo C and oligo M but
failed to shift oligo A or T (Fig. 1B).
Because the surrounding sequences of the
three nontemplate oligos are identical,
this result implies that the holoenzyme
recognizes the single-stranded nontem-
plate sequence in the —10 region. Core
enzyme bound all three nontemplate oli-
gos nonspecifically (Fig. 1B) (14), as
would be expected from the existence of
numerous specific and nonspecific binding
sites in the BB’ and the a subunits (15,
16). The failure to bind the template oligo
could be significant, or it might be an
artifact of this particular sequence.

An equilibrium competition assay (17)
was used to quantify the relative affinity of
Ea’® for the different oligos. Holoenzyme
was incubated with labeled oligo C and
increasing concentrations of unlabeled
oligo competitor. After electrophoresis,
the amount of radioactivity bound to the
polymerase was measured (Fig. 2). Com-
petition by unlabeled oligo C reflects a
stoichiometry of binding of about one
oligo per enzyme. Oligo A did not com-
pete detectably even in 20-fold excess
over polymerase (200-fold molar excess
over oligo C). Oligo M competed poorly
but detectably, by a factor of 15 to 20 less
than oligo C. This result confirmed that
Eo’° binds specifically to the nontemplate

... 8

. REPORTS

Fig. 3. Dependence of
oligo binding on RNA poly-
merase concentration. Per-
centage of bound oligo C
(A) or oligo M (B) is plotted
against concentration of
RNA polymerase. Circles
denote Ec”° and squares
denote Ec7®q,5,. On the
right of each graphis anim-

Eo"%4374 age of a typical (but dif-
o e ferent and independent)

= EMsA

sequence of the —10 element.

Several mutations in region 2.4 of a’°
have been isolated as suppressors of mu-
tations in the —10 consensus (13, 18,
19). The ¢’ mutation GIn**? — His
(074371) suppresses a T to C mutation at
the —12 position (13), causing mutant
promoter function to be about eight times
greater, but not affecting wild-type pro-
moter activity. To confirm that the de-
tected binding reflects interactions impor-
tant for promoter function, we used
EMSA to examine the mutant sigma fac-
tor and the oligo containing the —12 T to
C mutation (oligo M). 67%,3,y; was con-
structed with a histidine tag to facilitate
purification; the histidine tag does not
interfere with transcriptional activity or
EMSA when ¢ is complexed with E
(14). In vitro transcription with purified
polymerase shows that the mutant sigma
factor has wild-type activity on wild-type
Pg. and partially suppresses a T to C mu-
tation in Py, (14). This is similar to the
results of in vivo analysis (13).

In addition to Eo™, we tested Eo"°,57
in equilibrium competition against labeled
oligo C (Fig. 2). As expected, oligo A failed
to compete, and competition by oligo C
showed identical stoichiometry for Eo7° and
Eo7%,37- However, oligo M competed
with oligo C about threefold greater for bind-
ing to Eoc™q437 than to Ea™. The implica-
tion that Eo7°y,;,y binds oligo M with
greater affinity than Ec7® was verified by use
of EMSA to measure an apparent binding
constant (K) for oligos C and M with both
mutant and wild-type polymerase (Fig. 3).
Both Eo™ and Eo"°,;7y bound oligo C
with a K of ~3 nM. However, Eo"%q4371
bound oligo M with twofold greater affinity
than Eo™, with K values of ~7 and ~15
nM, respectively. The difference was subtle
but reproducible. Binding was also qualita-
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tively different for holoenzyme containing
the two sigma factors; mutant sigma factor
displayed less smearing between the free and
bound DNA, possibly reflecting a smaller
dissociation rate. We presume that this bind-
ing preference accounts for suppression of
the —12 T to C promoter mutation by the
[0 7OQ437H mutation.

The difference in apparent K, with the
two sigma factors indicated that binding of
the nontemplate oligos is directed by o°.
To confirm this, we used an ultraviolet
cross-linking assay (20); ultraviolet light is
expected to cross-link only polypeptides
that are in intimate contact with the
DNA. Binding reactions containing la-
beled oligo C and various forms of RNA
polymerase were irradiated and then ana-
lyzed on an SDS-polyacrylamide gel (Fig.
4). Although the B and B’ subunits cross-
linked slightly, the predominant species
had the mobility of the ¢ subunit. To
verify that ¢ was cross-linked, we used
holoenzyme reconstituted with three sig-
ma polypeptides of different molecular
mass that recognize the same —10 region,
and also a ¢ truncation: Bacillus subtilis
SigA (Eo#; 43 kD), E. coli RpoS (EcS; 41
kD), domain 2 of sigma factor 70
(Ed7°,04_4483 39 kD), and ¢7° amino acids
360 to 528 fused to glutathione-S-trans-
ferase (GST) (Eo™Gsr 360-5281 40 kD).
Both the o7 fragment, defining domain 2
(21), and the GST fusion product (14)
were sufficient to bind oligo C in the
context of holoenzyme. Each of the three
sigma polypeptides cross-linked efficiently
to oligo C (Fig. 4), shifting the mobility of
the major cross-linked species according
to the molecular mass of the sigma
polypeptide used; SigA and RpoS ran larg-
er than expected because full-length sigma
polypeptides run anomalously in SDS-
polyacrylamide gel electrophoresis. The
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Fig. 4. UV cross-linking of RNA polymerase sub-
units to oligo C. Autoradiogram of SDS gel analy-
sis of a UV cross-linking experiment is shown.
Lanes 1 to 5, different forms of holoenzyme: Ec"°,
Eo”, EoS, Eo70,0,_446) @Nd E67C4g1 350 5081 lANE
6, core (E) alone; lanes 7 and 8, overexposure of
lanes 5 and 6 to show weakly cross-linking GST
fusion sigma polypeptide. Positions of proteins
were verified by silver staining and are shown on
the left for Ea”%; molecular sizes of protein mark-
ers (in kilodaltons) are indicated on the right.

1260

GST fusion product cross-linked detect-
ably but less efficiently. This may reflect a
core binding deficiency, because, unlike
the native sigma factors, the GST fusion
product could not compete for binding
with a (presumptive) contaminant o frag-
ment in the core preparation (Fig. 4).

Thus, E. coli RNA polymerase recog-
nizes single-stranded DNA oligos that rep-
resent the nontemplate strand of the open
region of a promoter. Our findings agree
with footprinting data (22, 23), with evi-
dence that nontemplate bases are impor-
tant for promoter function (3), and with
cross-linking of sigma polypeptides to
nontemplate sequences in the promoter
region (24) and are consistent with pro-
posals that DNA melting proteins might
act through specific affinity for a single
strand of DNA (25, 26). Furthermore, we
have shown that the agent of binding is
the o subunit. By the use of overlapping
truncations in the cross-linking assay and
a mutation in region 2.4 of ¢’° that sup-
presses a promoter mutant, as well as by
homology alignment with B. subtilis SigA
(27), we have localized the region of in-
teraction to amino acids 374 to 448 of o°,
encompassing region 2. An atomic struc-
ture of region 2 has shown that GIn*37 and
other residues involved in recognizing the
—10 segment and melting the DNA are
arrayed on one face of an a helix, where
they might contact the bases of the non-
template DNA strand (28). Whether Ec™
recognizes TATAAT specifically as dou-
ble-stranded DNA and later transforms
this binding to the single-strand interac-
tion we describe, or whether single-strand
binding is the only base-specific interac-
tion in the region of melting, arising after
other forces (for example, superhelical
coiling energy) (29, 30) initiate the open-
ing process, remains unknown.
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