
ly sati~rateii with nitrates during their hie- 
time (22) .  Thus, solute permeability could 
be ~ncreased by the  delayed d i r e c t  transfer 
of gases from soil uartlcles some time after 

u 

fire (Figs. 1 and 2)  or from postfire b~ogenic  
production ( 1  8). 

Nitrogen oxides may alter the  perme- 
ability of the  subderlnal cuticle, either 
through direct oxidation effects or after hy- 
drat1011 as acids; H N O i  is a strong acid that 
is capable of increasing the  solute per- 
meance of lsolated cuticles 123). as well as , ,, 

the  subdermal cuticle in Ernmenanthe seeds 
i22) ,  and induces permination at molarities - 
comparable to  those generated by smoke 
(24) .  Additionally, direct dry deposition of 
both nitric and acetlc a c ~ d s  after flre may be 
important (25) ,  hut this is likely a short- 
lived effect as the  hie11 ammonium and 
alkalinity concentrations in ash eventually 
buffer these acids. 

Although smoke-induced germination 
in Ernrnenm~the is assoc~ated with increased 
solute rermeahilitv of the  subilermal cutl- 
cle, we cannot yet say; if this is directly 
1111-olved in trlggerlng germ~nat ion,  and 
other roles for N O z  have been proposed 
(26) .  
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Discrete Determinants in Transfer RNA 
for Editing and Aminoacylation 

Stephen P. Hale, Douglas S. Auld,* Eric Schmidt,? 
Paul Schimmel: 

During translation errors of aminoacylation are corrected in editing reactions which 
ensure that an amino acid is stably attached to its corresponding transfer RNA (tRNA). 
Previous studies have not shown whether the tRNA nucleotides needed for effecting 
translational editing are the same as or distinct from those required for aminoacylation, 
but several considerations have suggested that they are the same. Here, designed tRNAs 
that are highly active for aminoacylation but are not active in translational editing are 
presented. The editing reaction can be controlled by manipulation of nucleotides at the 
corner of the L-shaped tRNA. In contrast, these manipulations do not affect aminoacyl- 
ation. These results demonstrate the segregation of nucleotide determinants for the 
editing and aminoacylation functions of tRNA. 

D u r i n g  an~inoacylation of ~ R N A S  for pro- 
tein synthesis, errors of amino acid activa- 
tion (by t R N A  synthetases) can occur. 
These errors are corrected by translational 
editing reactions, some of which require the  
action of spec~fic tRNAs. Major determi- 
nants for am~noacylation of many tRNAs 
are located in the  acceptor stems and anti- 
codons ( 1 ,  2 ) .  These t ~ v o  regions of the  
L-shaped t R N A  are 111 different domains 
that represent the  ~ndividual arms of the  
"L." Edi t~ng reactions involve the  transfer 
of a nlisactivated amino acld to the  hvdrox- 
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y1 group of a water molecule. This is chem- 
ically similar to the  transfer of an  activated 
amino acid to the  3'-hydroxyl of a tRN'4. 
Considering the  similarity of the  reactions 
and the  early demonstration of the  close 
relation hetween the editing and amlnoacyl- 
ation activ~ty of a tRNA ( 3 ) ,  nucleotides 
that are needed for aminoacylation may be 
sufficient to confer editing activity. 

Errors occur as a result of the difficulty that 
alninoacyl tRNA synthetases have in discrim- 
inating between related alnlno aclds. Pain of 
amino acids such as valine and isoleucine, 
~vhlch differ by a single nlethylene group, or 
threonine and vallne, which are isosteric, are 
difficult to discri~ninate (4).  Isoleucyl-tRNA 
synthetase (IleRS) misactivates valine with a 
frequency of about 11180 that of isoleucine 
activation (5). This misact~vat~on 1s about 
t ~ v o  orders of magnitude less than the overall 



Fig. 1. Cloverleaf diagram of tRNAVal (UAC anti- 
codon) and tRNA1Ie (GAU anticodon) shown in 
black and red, respectively, and chimeric mole- 
cules that are combinations of specific frag- 
ments of tRNAV4 and tRNA1Ie. The common D, Y, 
and T modified bases in the D- and TYC-stem- 
loop are shown along with the four major bases. 
Many nucleotides are the same in the two 
tRNAs. The chimeric tRNAs are depicted as hav- 
ing tRNAVal as the host (in black) into which a 
region (for example, GAU anticodon, D-stem- 
loop) from tRNA1Ie was introduced (in red). 

fidelity manifested in protein synthesis (6). 
Similarly, valyl-tRNA synthetase misacti- 
vates threonine at a relatively high frequency 
compared to the overall accuracy of transla- 
tion (7, 8). 

The overall editing reaction with va- 
line as catalyzed by isoleucyl-tRNA syn- 
thetase is 

IleRS + Val + ATP 

+ IleRS(Va1-AMP) + PPi (1) 

IleRS(Va1-AMP) + tRNAfle + IleRS 

+ Val + AMP + tRNAUe (2) 

In reaction 1, Val is misactivated to form 
the tightly bound valyladenylate interme- 
diate, and in reaction 2, the addition of 
isoleucine tRNA (tRNA1le) triggers the hy- 
drolysis of the misactivated adenylate. Some 
hydrolysis of Val-AMP (adenosine mono- 
phosphate) occurs before transfer of the va- 
line to tRNAfle [pretransfer editing (8)], 
whereas an esterase activity encoded by an 
insertion (CP1) in the enzyme removes va- 
line from a transiently formed mischarged 
Val-tRNAfle species [posttransfer editing (8- 
lo)]. In either case, the net result is the 
tRNA1le-dependent hydrolysis of adenosine 
triphosphate (ATP). (Therefore, editing- 
induced hydrolysis of ATP measures both 

Fig. 2. Bar graph comparisons of rates of aminoacylation with isoleucine at pH 7.5,37"C (gray vertical bars), 
and of tRNA-dependent hydrolysis of valyladenylate (editing) (white, cross-hatched bars) at pH 7.5,25"C (27).  
Rates expressed as bars are relative to those of native tRNA1Ie. Beneath the bar graphs the specific tRNAs 
(and their anticodon sequences) that were used for the aminoacylation and editing assays are shown; the 
sequences of these tRNAs are given in Fig. 1. (A) Whereas tRNAV4 (UAC anticodon) is inactive for amino- 
acylation with isoleucine, tRNAVmU is active; in spite of its activity for arninoacylation, this molecule does not 
trigger the editing reaction. Similarly, when either the anticodon stem-loop or the acceptor stem from tRNA1Ie 
is introduced into tRNAVaVGAu, the resulting chimeric molecules are highly active for charging but have no 
activity for triggering hydrolysis of misactivated valyladenylate. (6) Whereas tRNAVaVGAU is inactive for trigger- 
ing the editing response, transplantation (from tRNA1Ie) of the D-loop together with the anticodon- and 
T+C-stem-loop, or of the D-loop alone, yields a molecule that is highly active in the editing reaction. 
Transplantation of the D-loop from tRNAVal into tRNA1" had lttle effect on aminoacylation with isoleucine, but 
inactivated the tRNA1Ie variant for editing. Error bars are standard deviations. 

pre- and posttransfer editing.) In contrast, 
when tRNAUe is added to the correctly 
activated IleRS(I1e-AMP) complex, there 
is no breakdown of the isoleucyladenylate, 
and the isoleucyl moiety is stably joined to 
tRNAne. Thus, RNA-dependent amino 
acid discrimination affords selectivity be- 
tween isoleucine and valine. 

To investigate the structural basis for 
RNA-dependent amino acid discrimina- 
tion, we examined whether valine tRNA 
(tRNAVal) could trigger the hydrolysis of 
misactivated Val-AMP bound to IleRS, 
under conditions in which the concentra- 
tion of tRNAVal was high enough to 
bind to IleRS (1 1 ). Whereas tRNAfle was 
efficient at inducing hydrolysis, we ob- 
served no hydrolysis when tRNAVal was 
added (1 2). These results prompted us to 
identify the nucleotide differences be- 
tween tRNAfle and tRNAVal that were 
responsible for the editing activity. 

We constructed a series of chimeric 
tRNA molecules (1 3) in which portions of 
tRNAVal and tRNAfle were combined (Fig. 
1). Because base modification affects the 
activity of tRNA1le (14), all of the chimeric 
molecules were produced in vivo and sub- 

identity of tRNAne (1, 14). When the 
UAC anticodon of tRNAVal was replaced 
with the GAU anticodon of tRNA"', a 
tRNAVa1IGAU species was created that was 
an efficient substrate for aminoacylation 
with isoleucyl-tRNA synthetase but not 
active in triggering the editing response 
(Fig. 2A). Thus, the nucleotides sufficient 
for aminoacylation were not able to confer 
the editing response. Other constructs 
were made and tested for their aminoacyl- 

sequently purifiid. tRNAVal is not amino- 
acylated by IleRS, and therefore any change Fig. 3. Schematic diagram of tRNAVaVGAu within 

the L-shaped three-dimensional structure. Dotted 
in tRNAVal that 'Onvert it into a lines indicate tertiary interactions. The common 
substrate for aminoacylation with isoleu- modified bases (Y, T, D) in  the D- and TYC-loops 
cine might also make it a viable substrate are shown. The three oositions in the D-looo that ~ ~~ , - ~- 

for editing [reaction (2)1. The anticodon of are needed to trigger the editing response are 
tRNAUe is a major determinant for the marked with arrows. 
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ation and editing activities. T h e  antico- 
don stern-loop of tRNA1le was introduced 
into tRNA""llG"U. Although this con- 
struct, like tRNA""liG"", has an amino- 
acylation activity within about twofold 
that of native tRNAH', it was not active in 
triggering the editing reaction (Fig. 2A) .  
Similarly, introduction of the acceptor 
stem of tRNA1Ie into tRNAV"liG"" yielded 
a molecule active for aminoacylation but 
not  for editing. 

The acceptor stem of tRNAL'"l was com- 
bined with the rernainine three-auarters of " 

tRNA1Ie, and the resulting molecule was al- 
most fully active in both aminoacylation and 
editing (Fig. 2B). Thus, the origin of the 
acceptor stem, whether tRNAI1' or tRNAVal, 
does not affect editing. Instead, the nucleo- 
tides required for editing reside in part or all of 
the D-loop (the sequences of the D-stem of 
tRNA1" and tRNAVd1 are identical) or the 
ThC-stem-loop of tRNA1". To test this hy- 
pothesis, we installed the D-loop from 
tRNA1le into tRNAV"liG"U by changing three 
nucleotides (including an inserted nucleotide) 
of tRNAV"llGAU. This constrLlct was nearly 
fully active in aminoacylation and editing 
(Fig. 2B). Thus, a D-loop swap was sufficient 
to trigger the editing response but had little or 
no effect on the aminoacylation function. 
Next, we introduced the D-loop of tRNALJd1 
into native tRNA1Ie. This molecule was al- 
most fully active in aminoacylation but was 
inactive for editing (Fig. 2B). Therefore, re- 
gardless of whether the core framework is 
derived from tRNA1" or tRNA'.""G"", the 
sequence of the D-loop is sufficient to trigger 
the editing response. 

The D-loop interacts with the T+C-loop 
to form the corner of the two-domain L- 
shaped tRNA molecule (15-17) (Fig. 3). In 
this location the D-loop is positioned to be 
sensitive to simultaneous synthetase interac- 
tions with the anticodon and with the amino 
acid attachment site. This positioning may 
function in matching an amino acid with its 
corresponding anticodon. The editing system 
displays a high degree of specificity for a par- 
ticular D-loop sequence which, in turn, might 
mediate a subtle conformational change that 
is necessary for triggering the editing response. 
This corner of the tRNA rnolecule is highly 
differentiated and might play a role in a 
protein-discriminatlon reaction (1 7). One 
possibility is that the large insertion into 
the active site of IleRS (referred to as CP1) 
interacts with this corner of the tRNA 
structure. This insertion is known to func- 
tlon in editing (1C, 18). 
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Ndjl p, a Meiotic Telomere Protein Required 
for Normal Chromosome Synapsis 

and Segregation in Yeast 
Michael N. Conrad, Ana M. Dominguez, Michael E. Dresser* 

The Saccharomyces cerevisiae gene NDJl  (nondisjunction) encodes a protein that ac- 
cumulates at telomeres during meiotic prophase. Deletion of NDJl (ndjlA) caused 
nondisjunction; impaired distributive segregation of linear chromosomes, and disordered 
the distribution of telomeric Rap1 p, but it did not affect distributive segregation of circular 
plasmids. Induction of meiotic recombination and the extent of crossing-over were 
largely normal in ndj lA cells, but formation of axial elements and synapsis were delayed. 
Thus, Ndjl p may stabilize homologous DNA interactions at telomeres, and possibly at 
other sites, and it is required for a telomere activity in distributive segregation. 

Efficient segregation of chromosomes in process when overexpressed (1). NDJl cor- 
meiosis is required for haploidization. In a responds to the open reading frame 
screen for yeast genes that control meiotic YOL104c from chromosome XV (2) .  The 
chromosome segregation, nre identified predicted Ndjl  protein comprises 352 ami- 
NDTl bv its ability to interfere with this no acids and shows no sienificant similari- 

- 1  " 
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