ManLev and then decorated with biotin hy-
drazide (Fig. 4B). The toxicity of the conju-
gate was dependent on the expression of ke-
tones: Cells expressing high levels of ketones
(>700,000 ketones per cell as estimated by
flow cytometry analysis) were sensitive to the
conjugate with lethal doses (LDsp) in the
range of 1 to 10 nM. In contrast, the conju-
gate showed no toxicity against cells express-
ing fewer ketones (<<50,000 ketones per
cell). These results indicate that cell surfaces
can be metabolically engineered to support
selective drug delivery, and that the sensitiv-
ity of target cells can be controlled by mod-
ulating the expression level of the unique
targeting epitope.

Variations of this strategy can be envi-
sioned, such as the direct targeting of cell
surface ketones with hydrazide-conjugated
drugs or probes and the use of other mu-
tually reactive organic functional group
pairs. The chemoselective formation of
hydrazone linkages among small molecule
pro-drugs has been accomplished in whole
animals and human subjects (4), setting
the precedent for the application of cell
surface engineering in vivo. Other poten-
tial applications of cell surface remodeling
include engineering new determinants for
immunological recognition, tissue-specific
cell trafficking, and cell adhesion to syn-
thetic substrates.
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Localization of Xenopus Vg1 mRNA by Vera
Protein and the Endoplasmic Reticulum

James O. Deshler,* Martin I. Highett,” Bruce J. Schnappt

In many organisms, pattern formation in the embryo develops from the polarized dis-
tributions of messenger RNAs (mMRNAs) in the egg. In Xenopus, the mRNA encoding Vg1,
a growth factor involved in mesoderm induction, is localized to the vegetal cortex of
oocytes. A protein named Vera was shown to be involved in Vg1 mRNA localization. Vera
cofractionates with endoplasmic reticulum (ER) membranes, and endogenous Vg1
mRNA is associated with a subcompartment of the ER. Vera may promote mRNA
localization in Xenopus oocytes by mediating an interaction between the Vg1 3’ un-
translated region and the ER subcompartment.

One function of mRNA localization is to
restrict translation of specific mRNAs to
particular domains of early embryos (I, 2),
thereby conferring the beginnings of pat-
tern formation. Vgl mRNA encodes a
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transforming growth factor—f involved in
mesoderm induction (3) and is localized to
the vegetal blastomeres of early Xenopus
embryos (4). Localization of Vgl mRNA
begins in late stage Il oocytes where Vgl
mRNA accumulates in a wedge-shaped re-
gion of the vegetal hemisphere (5) before
being transported to the vegetal cortex of
stage III oocytes by a microtubule-depen-
dent process (5, 6). Localization is directed
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by autoradiography. XBG represents an RNA probe including nts 148 through 596 of the Xenopus
B-globin gene. (C) Vera binding to the VgLE is specific. Gels show competitive inhibition of Vera cross-
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contained equivalent amounts of cocyte protein.

by a 366-nucleotide element in the Vgl 3’
untranslated region (UTR): the Vgl local-
ization element (VgLE) (7).

We used an ultraviolet (UV) cross-link-
ing assay (Fig. 1) to identify cytoplasmic

proteins in Xenopus oocytes that specifically
bind the VgLE. All 3?P-labeled RNA
probes cross-linked with similar efficiency
to a pair of polypeptides at ~60 kD, which
suggests that this interaction is nonspecific.
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However, only probes containing the VgLE
labeled a 75-kD polypeptide.

If labeling of the 75-kD protein by the
VgLE-containing probes (Fig. 1B) were
due to a specific RNA-protein interaction,
then in competition experiments, unla-
beled VgLE should inhibit cross-linking
more efficiently than other unlabeled
RNAs. Unlabeled RNAs not containing
the VgLE barely competed at a 500-fold
molar excess, whereas a 75-fold molar ex-
cess of unlabeled VgLE inhibited cross-
linking (Fig. 1C). Thus, VgLE binding to
the 75-kD polypeptide is specific. We
have named this protein “Vera” to reflect
“VgLE binding and ER association,” as
described below (8). Vera cross-linking
activity is present during all stages of oo-
genesis and peaks slightly at stage II just
before localization begins (Fig. 1D).

Examination of the VgLE nucleotide se-
quence revealed four repeated sequence el-
ements: E1, E2, E3, and E4 (Fig. 2A). Ex-
cept for an additional E2 and E4 located
upstream of the VgLE, all of the repeated
elements are confined to the VgLE. In a
previous study, deletions that removed one
or more of the repeats (Fig. 2A) impaired
localization (7). We used these repeated
elements to analyze RNA localization and
Vera binding.

Mutant VgLEs lacking all copies of E1,
E2, E3, or E4 were constructed and their

Fig. 2. Repeated sequences within the VgLE are
involved in Vera binding and localization. (A) Four
repeated sequence elements—E1, E2, E3, and
E4—are concentrated within the 366-nt VgLE.
There are two copies of E1 (VAUUUCUAC), four
copies of E2 (WUCAC) and one E2-like element
(UUGCAC), two copies of E3 (UGCACAGAG), and
three copies of E4 (CUGUUA). Mutations in which
all copies of one repeat were deleted were made
by site-directed or polymerase chain reaction mu-
tagenesis and are referred to as AaE1, AaE2,
AaE3, and AaE4. The positions of the three non-
element deletions (ANE1, ANE2, and ANE3) con-
structed for this study are indicated. Also indicat-
ed are 5' (5'A36) and 3’ (3'A36) deletions, which
impaired localization in a previous study (7). (B)
The affinity of Vera for wild-type and mutant VgLEs
was measured by competitive inhibition of Vera
cross-linking to wild-type (WT) 3°P-labeled VgLE
probe. Competition efficiencies (22) reflect the rel-
ative affinities of the mutant RNAs for Vera. The in
vivo localization phenotypes of mutant VgLEs
based on the morphological assay (C) are indicat-

ed with +, +/—, or — to represent wild type, impaired, or nonlocalization, respectively. (C) Microinjection
of mutant VgLE RNAs. Images are bright-field micrographs of sections from oocytes cultured for 5 days
after being injected at stage Il with 15,000 cpm of the indicated *2P-labeled RNA (2 x 108 cpm/pg) (23);
animal poles are oriented upward. WT localization (VgLE and ANE1) is characterized by an accumula-
tion of silver grains in the vegetal hemisphere (white arrows) and at the vegetal cortex (black arrows).
Impaired localization shows a dramatic reduction of silver grains (white and black arrows) in the vegetal
region (AaE1). Nonlocalization shows no detectable accumulation of silver grains in the vegetal region

(AaF2).
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Fig. 3. Vg1 mRNA localization
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cross-linking activity with ER membranes. Cytoplasmic extracts from oocytes (stage IV
through V1) were overlaid with sucrose and subjected to ultracentrifugation, causing a
portion of the membrane-associated proteins to float. Fractions were analyzed for Vera
cross-linking activity (Vera) or probed by immunoblotting to detect the ER marker
(TRAPa). (C) Dilution of cytoplasmic extracts releases Vera from the ER. Extracts were
diluted 10-fold before sucrose density gradient sedimentation, and fractions were ana-
lyzed for Vera cross-linking activity. (D) Endogenous Vg1 mRNA is associated with a
subcompartment of the ER during localization. Vg1 mRNA was detected by in situ
hybridization (5) in cocytes at stage Il, II/1ll, and lll. ER was detected in oocytes at stage |l
II/1ll, and Il by TRAP« antibodies. Alkaline phosphatase—conjugated antibodies were used to
detect primary probes for both the ER and endogenous Vg1 mRNA (5). Negative controls (no
primary probe) for in situ hybridization and TRAPa immunocytochemistry in stage Ill oocytes
are also shown. The association between the Vg1 mRNA and the vegetal ER subcompart-

control

ment appears to be maintained throughout stages II/lll to Ill, when both migrate from the
wedge-shaped region to the vegetal cortex (black arrow), with only a few globular structures remaining above the cortex (white arrow).

relative affinities for Vera were deter-
mined by competitive inhibition of Vera
cross-linking to a [*’P)-labeled VgLE
probe. Three similarly sized nonelement
deletions (ANE1, ANE2, and ANE3) (Fig.
2A) were also tested. Deleting all copies of
El, E2, or E4 diminished binding to Vera,
whereas deletion of E3 or of nonelement
regions had no effect (Fig. 2B). The affin-
ities of AaEl, AaE2, and AaE4 were ap-
proximately one-fifth that of wild-type
VgLE (Fig. 2B). Thus, three of the four
repeated elements—E1, E2, and E4—are
involved in Vera binding.

To determine whether the mutant
RNAs with reduced affinities for Vera
were impaired for localization in vivo, >2P-
labeled RNAs were microinjected into
stage 11l oocytes (Fig. 2C). All three of the
mutant RNAs with reduced affinities for
Vera (AaEl, AaE2, and AaE4) failed to
localize efficiently, whereas the three non-
ement deletions localized as well as wild-
type VgLE (Fig. 2, B and C). The mutant
RNA AaE3 had wild-type affinity for Vera
but localized poorly, which suggests that
E3 might be required for a step of the
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localization process that does not involve
Vera binding. Among the element dele-
tion mutants, two localization patterns
could be distinguished. Nonlocalization
was observed in oocytes injected with
AaE2, and impaired localization was ob-
served in oocytes injected with AaFEl,
AaE3, or AaE4 (Fig. 2, B and C). These
localization patterns were not due to dif-
ferential stabilities of the RNAs, as similar
amounts of all full-length >3?P-labeled
RNAs could be extracted from oocytes
after microinjection and culture for 5 days
9).

Because all three mutations that dis-
rupt binding to Vera also impair (AaEl
and AaE4) or abolish (AaE2) localization,
we conclude that Vera and its interaction
with the VgLE are involved in Vgl
mRNA localization. These results also
suggest that all four of the repeated ele-
ments (El through E4) are involved in
Vgl mRNA localization.

Certain mRNAs are transported in
large particles (10). To ascertain whether
Vera is associated with a large particle, we
determined the sedimentation character-

istics of Vera cross-linking activity in cy-
toplasmic extracts. Vera cross-linking ac-
tivity sediments faster than do endogenous
ribosomes, which suggests that Vera is as-
sociated with a large particle or organelle
(Fig. 3A). The Vera cross-linking activity
co-sediments with TRAPa, an integral
membrane protein associated with the
protein translocation machinery of the en-
doplasmic reticulum (ER) (11). This is
observed in gradients with different com-
positions and spin durations (9) and in
flotation experiments (Fig. 3B). Vera is
not an integral membrane protein, be-
cause Vera cross-linking activity remains
in the soluble fractions when the extract is
diluted before sedimentation (Fig. 3C).
The association of Vera with the ER
raised the question of whether endogenous
Vgl mRNA is associated with the ER
during localization. Endogenous Vgl
mRNA is distributed throughout the cyto-
plasm of early stage II oocytes (Fig. 3D),
but at the transition between stages Il and
[II (II/II1) of cogenesis, Vgl mRNA accu-
mulates in a wedge-shaped region between
the nucleus and vegetal cortex (Fig. 3D)
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Fig. 4. Colocalization of Vg1 mRNA and the ER to
globular structures of the vegetal wedge-shaped
region in a stage Il/lll oocyte. Vg1 mRNA was
detected by in situ hybridization (5), which pro-
duces a blue color, followed by immunolocaliza-
tion of ER in the same oocytes with Vector Red
(Vector Laboratories), which produces a red col-
or. This double labeling results in a purple color
at regions of overlap of the blue (Vg1) and red
(ER) signals (upper left) when observed with
bright-field illumination. It can be seen that the
purple globular structures (arrowheads) corre-
spond to ER compartments when the same
specimen is visualized by fluorescence of Vector
Red (bottom left), which exclusively reveals the
ER but not Vg1 mRNA (bottom right; only Vg1
mRNA is labeled). Specimens in which only the
ER is labeled (upper right) show purely red glob-
ular structures with bright-field illumination.

(5). As oogenesis proceeds to stage III,
Vgl mRNA labeling accumulates at the
vegetal cortex (Fig. 3D) (5, 12, 13).

In stage II/I11 cocytes, TRAPa labeling
reveals an ER subcompartment that coin-
cides with the distribution of Vg1 mRNA
(Fig. 3D), both in the shape of the wedge
region and in the globular substructure. At
stage 1II, a layer of ER is found tightly
associated with the vegetal cortex (Fig.
3D), which is similar to the pattern of Vgl
mRNA. Double-labeling  experiments
(Fig. 4) show that endogenous Vgl
mRNA and ER colocalize to the same
globular substructures in the wedge-
shaped region, which indicates that Vgl
mRNA is associated with the ER during
localization. Before localization, Vgl
mRNA and the ER are probably not asso-
ciated, because in stage Il oocytes the Vgl
mRNA distribution is punctate and the
ER is reticular (Fig. 3D).

Because Vgl translation appears to be
repressed during localization (2), Vgl
mRNA is presumably localized by a trans-
lation-independent mechanism. Although
Vgl mRNA might associate with the ER
via the signal recognition particle at the
time of translation, the present study pro-
vides evidence for a distinct mRNA-ER
targeting mechanism that involves signals
in the 3’ UTR and discriminates between
distinct compartments of the ER. Our
studies also imply a link between Vgl
mRNA localization and microtubule-
based organelle transport. The observation
that Vgl mRNA localization to the vege-
tal cortex during stage III is inhibited by
microtubule-depolymerizing drugs (5, 6)
may be explained by the fact that Vgl
mRNA is attached to the ER, and the ER
is transported on microtubules (14). Al-
though a specific role for Vera has not
been resolved, a possible function might
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be to link Vgl mRNA to the vegetal ER
subcompartment. Other mRNAs encoding
membrane (15) or secreted proteins (16)
have polarized distributions in somatic
cells, which suggests that the ER may play
a central role in the spatial organization of
eukaryotic gene expression.

Note added in proof: While this paper was
in review, a 78-kD protein likely to be Vera,
was independently indentified by UV cross-
linking to the VgLE (24).
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