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An approach to solving continuous global optimization problems was developed. It 
builds on two innovative concepts, subenergy tunneling and non-Lipschitzian terminal 
repellers, to ensure escape from local minima in a fast, reliable, and computationally 
efficient manner. The generally applicable methodology is embodied in the TRUST 
(terminal repeller unconstrained subenergy tunneling) algorithm, which is deterministic, 
scalable, and easy to implement. Benchmark results show that TRUST is faster and more 
accurate than previously reported global optimization techniques. An application of 
TRUST to a large-scale exploratory seismology problem of substantial computational 
complexity (that is, residual statics corrections) is also reported. 

Examples of the role played by nonlinear 
optimization in the application of mathemat- 
ics to practical problems abound in every field 
of scientific, technologic, economic, or social 
interest, including physical sciences (elasticity 
theory, hydrodynamics, celestial mechanics), 
computer science (design of VLSI circuits), 
geophysics (determination of unknown geo- 
logic parameters from subsurface or undenva- 
ter measurements), biology (protein folding), 
industrial technology (optimal control of reg- 
ulation systems, optimization of industrial 
flow through the factory line), and economics 
(optimal warehouse maintenance, optimal 
transportation routes). 

Typically, the overall performance of a 
system is described by a multivariate func- 
tion called the objective function. Opti- 
mality is achieved when the objective 
function attains its global extremum, 
which can be a maximum or a minimum, 
depending on  the problem. For most real- 
life applications, the objective function 
depends on  a large number of state vari- 
ables or parameters. Finding the extrema, 
and in particular, the absolute extremum, 
of such a function turns out to be pains- 
takingly tedious. T h e  primary difficulty is 
that the global extremum (for example, a 
minimum) of a real function is-despite 

tioned above have ~ersisted 
The generic global optimization problem 

considered here can be stated as follows. Let 
f (x)  : 9 + 3 be a bounded function with a 
finite number of discontinuities, and x be 
an n-dimensional state vector. For n = 1, 
we denote the state variable bv x. A t  anv 
discontinuity point x" the fuAction f is 
required to satisfy the inequality limx,xfi inf 
f (x)  2 f(xS) (lower semicontinuity condi- 
tion). Hereafter. 3 will denote the real 
numbers, f (x)  kill  be referred to as the 
obiective function, and the set 9' will be 
referred to as the set of feasible solutions (or 
search space). The  goal is to find the state 
vector x" that minimizes f(x)  in 9. The 
index gm stands for global minimum. With- 
out loss of generality, we shall take 9 as the 
hyperparallelepiped 9 = {xiPLp 5 x, 5 Pi+; 
i = 1, 2, . . . , n}, where ptp and p,f denote, 
respectively, the lower and upper bound of 
the ith state variable. 

W e  shall address the unco~~strained 
global optimization problem in terms of the 
evolution of a deterministic dynamical sys- 
tem that combines subenergy tunneling and 
non-Lipschitzian "terminal" repellers. We 
define the subenergy tunneling transforma- 
tion of the function f(x)  by the following 
nonlinear monotonic mapping: 

its name-a local property. Significant al- 
teration of the location and maenitude of E,,,(x, x*) = log(l/[l + exp(-jix) - a)]) 

L 3  

the global minimum can be carried out 
without affecting the locations and mag- 
nitudes of the other minima. Thus, short 
of exhaustive search, it would appear to be 
very difficult to design unfallible methods 
to locate the absolute minimum for a n  
arbitrary function. 

In recent years there has been a surge of 
interest in global optimization (1-6), and 
substantial progress has been achieved in 
breaking new theoretical ground (7-15). 
Nonetheless, many of the difficulties men- 
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In Eq. 1, j(x) = f (x )  - f(x*), a is a constant 
that affects the asymptotic behavior but not 
the inonotonicity of the transformation, 
and x* is a fixed value of x, whose selection 
will be discussed below. E, , ,b(~,  ~ 4 : )  has the 
same discontinuity and extremal points as 
f(x)  and the same relative ordering of the 
local and global minima, that is, Esuh(x, x:k) 
is a transformation of f (x)  that preserves all 
properties relevant for optimization. In ad- 
dition, this transformation is designed to 
ensure that ( i )  Equb(x, x*) quiskly ap- 
proaches zero for large, positive f(x) ;  and 

(ii) Esuh(xA x:k) rapidly tends toward ?(x) 
whenever f ix)  < 0. , , 

T h e  second concept we have built on  is 
terminal reoellers. Suooose that x obevs an 

A A 

evolution given by the dynamical system 
dx/dt = x = g(x) .  The  solutions of the 
corresponding stationary system, g(x)  = 0,  
are called equilibrium points. A n  equilib- 
rium point x,, of the dynamical system 
x = g(x)  is termed an attractor (repeller) 
if no (at  least one) eigenvalue of the n x 
n matrix ;it, */lit = dg(x,,)/dx, has a positive 
real part. Typically, a certain amount of 
regularity (Lipschitz condition) is required 
to guarantee the existence of a unique 
solution for each initial condition x(O), 
and in those cases, the system's relaxation 
time to an attractor, or escape time from a 
repeller, is theoretically infinite. If the 
regularity condition at equilibrium points 
is violated. sineular solutions are induced , 'z 

such that each solution approaches the 
terminal attractor or escapes from the ter- 
minal repeller in finite time (16) .  For 
example, the dynamical system i: = x1I3 
has a repelling unstable equilibrium point 
a t  x = 0, which violates the Lioschitz 
condition. Any initial condition, no mat- 
ter how close to the repelling point x = 0,  
will escape the repeller to reach any finite 
point x, in  a finite time, ta - x5I3. Termi- 
nal repellers, in conjunction with the sub- 
energy tunneling, are the foundation of 
our global optimization algorithm. 

W e  now assemble the above concepts 
into the TRUST (terminal repeller un- 
constrained subenergy tunneling) global 
optimization scheme. Let f (x )  be a func- 
tion one wishes to globally minimize over 
9. W e  define the TRUST virtual objec- 
tive function 

E(x, x*) = log(l/[l + exp(-j(x) - a)]) 

In the above expression 0 is the Heaviside 
function, which is equal to 1 for positive 
values of the argument and zero otherwise. 
The  first term on the right-hand side of Eq. 
2 corresponds to the subenergy tunneling 
function; the second term is the repeller 
energy term. The  parameter p > 0 quanti- 
fies the strength of the repeller. Application 
of gradient descent to E(x, x:" results in the 
dynamical system (i = 1, . . . n)  

By its very structure, E(x,  x*) trans- 
forms the current local minimum of f (x )  
into a global maximum but preserves all 
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lower local minima. Thus, when gradient by means of the subenergy tunneling 
descent is applied to the function E(x, transformation. Specifically, we integrate 

until a new region with negative gradient 
or waterfall is encountered and the process 

x:", the new dynamics, initialized at a 
small perturbation from the local mini- 
mum of f(x),  will escape this critical point 
to a lower valley of f(x) with a lower local 
minimum. Hence, application of gradient 
descent to E(x, x*) defined in Eq. 2,  as 
opposed to the original function f(x),  re- 
sults in a system that has a global descent 
property. This is the main idea behind 
constructing the TRUST virtual objective 
function. 

The basic algorithm proceeds as fol- 
lows. Initiall~l, x* is chosen to be one , , 
corner of the hyperparallelepiped 9; for 
example, x: = for i = 1, . .  . n .  
A repeller is placed at x*. It should 
be noted that the renelline terms in the " 
multidimensional case can be interpreted 
as hyperplane repellers and are active 
whenever f(x) 2 0. The initial state of the 
svstem is set to x* + d, where d is a small 
perturbation that drives the system into 9. 
We assume d has a uniform sign during the 

u - 
basic stage of the optimization. Depending 
on the relative values of f(x*) and f(x4: + 
d) ,  the dynamical system will initially be 
in a tunneling phase or a gradient descent 
phase. Subsequent switchings between the 
two phases are autonomous. 

Our tunneling idea is different in char- 
acter and implementation from other tun- 
neling methods based on classical diffiu- 'z 

sion, quantum effects, or metastability. In- 
stead of the state of the system jumping 
over or diffusing through a barrier, the 
subenergy tunneling eliminates the barrier 
and flattens the landscapes (ideally to a 
plane). Then, instead of propagation of 
the state through that plane by diffusion, 
one uses the extremelv fast eneine of the 
terln~nal repeller to m&e the syate on the 
downward s l o ~ e  of the virtual surface this 
repeller induces. 

A first enhancement to this basic nara- 
digm allows for N ,  componentwise direc- 
tion reversals of the solution flow at each 
boundary of the domain. The number Nv is 
specified. Because with each lower mini- 
mum identified a larger portion of the dy- 
namical flow will be in a repeller rather 
than gradient descent mode, successive tra- 
versals of the domain become significantly 
less exnensive. 

A second enhancement is instantiated 
~mmediatelv after the occurrence of N 
reflections.'~t involves replacing the co; 
stant direction of multidimensional renel- 
ling with an ensemble of one-dimensional 
( I D )  tunneling paths. As an illustration of 
this concept, assume that the system is 
descending toward the L-th local mini- - 
mum, +x. The solution evolves on the 
hypersurface obtained by collapsing f(x) 

where 

After convergence to wx, a terminal re- 
peller is positioned there, that is, wxa: is set 
equal to +x. Several schemes can be con- 
sidered for implementing the 1D tunneling 
away from repeller wx*. The simplest 
scheme co~lsists in evaluating f[,](x) on a 
uniform grid. Alternately, one call integrate 
the differential equation 

from the initial condition wx: + d,. In the 
above expressions, the notations f[,](x) and 
+f[,](x) are to indicate that all components 
of x except x, are kept fixed. Then, the first 
value x, for which the  argument of the 
Heaviside function 0(pf[,]) becomes nega- 
tive yields the initial condition, denoted 
x(++'), for reaching the next local mipi- 
mum w +  'x by means of Eq. 4. If 0(+f[,]) 
remains positive over both domains [P,-, 
+x:) and (wx: P;], the next parameter x , + ~  
is explored with, for example, Eq. 6. The 
choice of the dimension to be explored first 
(that is, the choice of i )  can be random. 

The successive tunneling and descent 
processes continue until a suitable stopping 
criterion is satisfied. For the 1D case when 
the state flows out of the domain boundary 
[for example, when x > p+ (assuming pos- 
itive flow)], the last local minimum found is 
taken as the global minimum. A formal 
proof is given in (8, 13). The multidimen- 
sional stopping criterion is quite similar to 
the 1D case. When no new initial condition 
is obtained [when 0(f[,]) > 0, for i = 

1, . . . n], the last local minimum found is 
taken as the global minimum. 

For 1D problems, the TRUST algo- 
rithm is designed to sweep the whole 
search space and thus find the global min- 
imum for any bounded lower semicontinu- 
ous function with a finite niunber of dis- 
contin~uities (13). Indeed, in an ideal im- 
plementation, the replacement of the 
function f(x) with the function E(x, x") 
ensures that ii) the flow follows the field 

\ ,  

lines in the negative gradient regions; (ii) 
when the objective function presents a 
discontinuity, the dynamical system (Eq. 
3 )  call only flow down (like in a waterfall) 
or tunnel; (iii) once a (local) minimum is 
found, the regions above this minimum " 

are flattened-ideally to a horizontal line; 
and (iv) the repeller then bends the hor- 
izontal portion down from the local mln- 
imum, and the system moves away from it, 

restarts. 
A direct extension of the 1D scheme to 

multidimensional global optimization prob- 
lems does not guarantee that the global 
optim~un will always be found. This is due 
primarily to the tacit assumption (13) of 
constant direction of repelling, d (d E 91n), 
from a local minimum x*. The resulting 
trajectory of the solution in 9 during tun- 
neling is then inflected only by the pres- 
ence of very strong surface gradients. Con- 
sequently, a global minimum may, for ex- 
ample, not capture a trajectory that tunnels 
near the periphery of its basin of attraction 
if the surface gradients there are weak. 

A formal convergence proof for the 
multidimensional case has not vet been ob- 
tained. In practice, however, because of its 
global descent property, the system dynam- 
ics always escapes local minima valleys with 
the help of the repeller effect and flows into 
lower valleys of the objective function using 
the information it gets from the tunneling 
process. 

In practice, solving multidimensional 
optim~zation problems is a trade-off prob- 
lem-namely, to find the optimal balance 
between accuracy and cost. In a strategy 
that realizes measurable trade-offs between 
these requirements, the multidimensional 
problem is reduced to the 1D case for 
which a formal convergence proof exists 
(8,  13). The first step is to transform a 
function of n variables into a function of 
one variable. In the second step, one ap- 
plies the algorithm of Eq. 3, with n = 1, to 
this new function. 

The idea is to construct a ID curve that 
"covers" the n-dimensional phase space of 
the problem. An approximate realization 
has been proposed (7). Instead of actually 
"filling" the n-dimensional domain, the " 

curve is only required to pass within a given 
distance (for example, roc) from any point 
in the domain. The parameter a is related 
to the available or desired accuracv, and it 
ensures that the curve has finite length and 
is differentiable. An explicit formula for this 
transformation can be found in (7), but 
other recipes can be devised, depending on 
the shape of the n-dimensional domain, 
optimization function, or other extraneous 
criteria. Such a reduction imnlies a worst 
case complexity that is proportional to the 
length of the 1D space and exponential in 
problem dimension, that is, O[(P/oc)"], 
Once the problem is reduced, one can apply 
the 1D version of TRUST, which is guar- 
anteed to converge, within an accuracy de- 
termined by a. 

To assess the TRUST algorithm, we car- " 

ried out benchmark problems using several 
standard multidimensional test fiunctions 
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(12, 13). In Tables 1 and 2, the perfor- fi~nction. The TRUST calculatio~~s were 
mance of TRUST is colnoared with the best oerformed with the value a = 2. for which 
competing global optimization methods, the subenergy tunneling transformation 
where "best" indicates the best widely re- achieves its most desirable asymptotic be- 
ported reproducible results we could find for havior (8). The dynamical equations were 
the particular test function. The  criterion integrated with an adaptive scheme, that, 
for comparison is the number of function within the basin of attraction of a local 
evaluations. The  im~rovement  over our minimum, considers the local minimiu~l as a 
previously published iesults (13) for such 
benchmark problems reflects the current 
advances in the TRUST algorithm. The  
results in Tables 1 and 2 demonstrate that 
TRUST is substantially faster than these 
state-of-the-art methods and produces con- 
sistent and accurate results. 

One of the ~rirnarv limitations of con- 
ventional global optimization algorithms is 
their lack of stopping criteria. This limita- 
tion is circumvented in benchmark prob- 
lems, where the value and coordinates of the 
global minima are known in advance. The 
achievement of a desired accuracy (such as, E 
= lop6)  is then considered as a suitable 
termination condition (2). For consistent 
comparisons, this condition was also used in 
TRUST, rather than its general stopping 
criterion. For each function, corners of the 
domain were taken as initial conditions; 
each result then represents the average num- 
ber of evaluations required for convergence 
to the global minimum of the particular 

terminal attractor. Typical base values for 
the key parameters A, (time step used in 
integrating Eq. 3) and p were 0.05 and 10, 
respectively. 

T o  assess the performance of TRUST for 
a large-scale practical application, we se- 
lected the problem of residual statics cor- 
rections for seismic data. In many geophysi- 
cal tasks seismic energy is detected by re- 
ceivers that are regularly spaced along a grid 
that covers the domain being explored, A 
source is positioned at some grid location to 
produce a shot. Time series data are collect- 
ed from the detectors for each shot; then 
the source is moved to another grid node for 
the next shot. 

A major degradation of seismic signals 
usually arises from near-surface geologic 
irreeularities 11 7-1 9). These include un- " 
even soil densities, topography, and signif- 
icant lateral variations in the velocitv of 
seismic waves. T h e  most important c o k e -  
quence of such irregularities is a distorted 

Table 1. Number of function evaluations required by different methods to reach a global mnmum of 
standard test functons. Abbreviatons for the functions: BR, Branin: CA, Camelback; GP. Godstein- 
Price; RA, Rastrigin; SH, Shubert; and H3, Hartman. Abbreviations for the methods: SDE IS the 
stochastc method of Aluffi-Pentn eta/.  (22); EA denotes the evoutlon agorlthms of Yong eta/.  (23) or 
Schneider el a/. (24); MLSL is the rnult~ple-level single-llnkage method of Kan and Timmer (25); A IS the 
intewa arithmetc technique of Ratschek and Rokne (1); TUN IS the tunneling method of Levy and 
Montavo (26); and TS refers to the taboo search scheme of Cvljovic and Kllnowski (12). 

Test functlon 
Method 

B R C A G P R A S H H3 

SDE 2,700 10,822 5,439 - 241,215 3,416 
E A 430 - 460 2,048 - - 

MLSL 206 - 148 - - 197 
I A 1,354 326 - - 7,424 - 
TUN - 1,469 - - 12,160 - 

TS 492 - 486 540 727 508 
TRUST 55 3 1 103 59 72 58 

Table 2. Comparson of the number of functon evai~atons (glven In parentheses) and precson of each 
varabe (x, to x,) for TRUST, the fast slmuated annealng (FSA) agorlthm of Szu and Hariley (27) and 
the stochastc approxmaton paradgm (SAS) of Stybnsk and Tang (28) Global mlnlmum FSA and SAS 
results are from (28) 

Method 

FSA 
(1 00,000) 

S AS TRUST Exact 

(3.710) (89) 

image of the subsurface structure that is 
due to misalignment of signals caused by 
unpredictable delays in recorded travel 
times of seismic waves in  the vertical 
neighborhood of every source and receiv- 
er. T h e  quality of the seismic analysis is 
improved with timing adjustments (statics 
corrections). One  typically distinguishes 
between field statics, which correspond to 
corrections that can be derived directlv 
from topographic and well measurements, 
and residual statics, which incorporate ad- 
justments that must be inferred statistical- 
ly from the seismic data. T h e  common 
occurrence of severe residual statics 
(where the dominant period of the record- 
ed data is significantly exceeded) and the 
significant noise contamination render 
the automatic identification of large static 
shifts very difficult. This problem has gen- 
erally been formulated in terms of global 
optimization, and to date, Monte-Carlo 
techniaues (11 ) (such as simulated an- ~,~ 

nealing and genetic algorithms) have pro- 
vided the primary tools for seeking a po- 
tential solution. Such an approach, how- 
ever, is extremelv exnensive. , L 

The  statics correction problem can be 
summarized as follows. Acoustic sienals are " 
shot from N, source locations and received 
by N, sensors. Each signal reflects at a mid- 
point k, i~ = 1, . . . , N,<. A trace t corre- 
spol~ds to seismic energy traveling from a 
source s, to a receiver rt through a midpoint 

O! i I 

-50 -25 0 25 50 

Static correction 

Fig. 1. One-dimensional slice through a 154-di- 
mensona objectve functlon associated wlth a re- 
sdual statcs problem. 

Common midpoint 

Fig. 2. The coherence factors, that IS, the dmen- 
sonless ratos Ek/B,, are plotted for each com- 
mon gather by uslng the initial and the optmal 
time shfts (resdua statics). Ideally, at the global 
optmum, these ratos should be equal to 1 .  Our 
results, represented by the dotted line, are indeed 
qute close to unity. 
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kt. LVe denote by Dfc the (complex) Fourier 
coefficient of frequency f (f = 1, . . . , Nj) 
for trace t,  t = 1, . . . , N ,  5 NrNS. Ideally, 
after they have been corrected for normal 
move-out (18), all traces corresponding to 
the same midpolnt carry coherent lnforina- 
tion. If there were no need for statics cor- 
rections, all signals, stacked by their com- 
mon midpoint, should be in phase and yield 
a maximum for the total power 

E(S, R) 

In Eq. 7,  the statics corrections S = 
(S,, . . . , S,?) and R = (R,  . . . , Rhrr) are 
now considered independent variables. 
Their ootimum values are found bv maxi- 
mizing ;he power E. Ecluation 7 highlights 
the multimodal nature of E, which, even for 
relatively lorn-dimensional s and R, exhib- 
its a very large number of local minima. 
This is illustrated in Fig. 1. 

To assess the performance of TRUST, we 
considered a problem ~nvolving N5 = 77 
shots and N ,  = 77 receivers. A data set 
consisting of N, = 1462 synthetic selsmic 
traces folded over Ni, = 133 common mid- 
point gathers was obtained from CogniSeis 
Corporation (20). The data set uses N - 49 

f: 
Fourier comwonents for data reoresetltatlon. 
Even though this set is somewhat smaller 
than typical collections obtained during seis- 
mlc surveys by the oil industry, it 1s repre- 
sentative of the extreme comwlex~tv under- 
lying residual statics problems. To  herlve a 
auantltative estlmate of TRUST'S oerfor- 
mance, let E, denote the total contribution 
to the stack power arising froin midpoint It, 

and let Bk refer to the upper bound of Ei, in 
terms of S and R. Using. a oolar coordinates 
representation for the trace data Djc, that is, 
Dfc = aft exp(ieufc), we can prove (21 ) that 

The TRUST results, illustrated in Fig. 2, 
show the significant improvement in the 
coherence factor of each common gather. 
This factor is the ratio EJB, and character- 
izes the overall quality of the seismic image. 

In conclusion, the TRUST methodology 
for solving unconstrained global function 
optimization problems proves to be a power- 
ful tool not only for academic problems; it 
has the robustness and consistency required 
by large-scale, real-life applications. 
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A Saturated X-ray Laser Beam at 7 Nanometers 
J. Zhang,* A. G. MacPhee, J. Lin, E. Wolfrum, R. Smith, 

C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, J. Nilsen, 
G. J. Pert, G. J. Tallents, J. S. Wark 

A saturated nickel-like samarium x-ray laser beam at 7 nanometers has been demon- 
strated with an output energy of 0.3 millijoule in 50-picosecond pulses, demonstrating 
that saturated operation of a laser at wavelengths shorter than 10 nanometers can be 
achieved. The narrow divergence, short wavelength, short pulse duration, high efficiency, 
and high brightness of this samarium laser make it an ideal candidate for many x-ray laser 
applications. 

A n  important objective In the develop- 
ment of x-ray lasers IS to deliver a coherent, 
saturated output at uavelengths shorter 
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than 10 nm ( I ) .  Such saturated x-ray lasers 
are required for holography (2)  and micros- 
copy (3) of biological specimens and for 
deflectometry (4), interferometry (5) ,  and 
radiography (6)  of dense plasmas relevant 
to inertial confinement fusion and labora- 
tory astrophysics (5) .  Saturated operation is 
lmoortant because it means that the inaxi- 
mum power possible for a glven volume of 
exclted olasma IS extracted bv the stlmulat- 
ed einlssion. Saturated x-rai lasers ensure 
an  output energy sufficient for most appll- 
cations and tend to produce a consistent 
output with little variation from shot to 
shot. Lasers are characterized by the prod- 
uct of the laser gain coefficient and the 
length of the laser region (gain-length 
product), and saturation requires a gain- 
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