R, (Fig. 4A). The lines were displaced verti-
cally from one another because the different
test stimuli and adaptation states shifted the
DC membrane potential. There was, howev-
er, little effect of visual stimulation (22, 23) or
adaptation on the slopes of the current-volt-
age relation, indicating that R, changed lit-
tle. This was true on average for all six cells
tested; the linear fit through the points of Fig.
4B has a slope of unity and an intercept of <1
megohm, indicating no change in input resis-
tance in the adapted state.

These measurements of R, are more con-
sistent with adaptation being caused by a de-
crease in tonic excitation than by an increase
in tonic inhibition. Supporting evidence for a
decrease in excitation underlying adaptation
comes from in vitro experiments showing that
intracortical synaptic excitation is depressed
after repetitive electrical stimulation (24).
Moreover, antagonists to presynaptic gluta-
mate autoreceptors that mediate excitatory
synaptic depression reduce extracellularly
measured adaptation effects (17). GABA (v-
aminobutyric acid) antagonists, on the other
hand, have little effect on adaptation (17,
18). Taken together, these and our observa-
tions give strong support for the view that
adaptation is caused by a decrease in the
excitation received by a cell. In principle, this
decrease could originate from an activity-de-
pendent decrease in synaptic efficacy (24)
whose effect would be enhanced if there were
excitatory feedback among cortical cells (25).
Our results provide the further constraint that
adaptation must act largely through a tonic
mechanism, which is an indicator of recent
contrast history and operates both in the pres-
ence and in the absence of visual stimulation.
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Regulation of Protein Phosphatase 2A by Direct
Interaction with Casein Kinase 2«

Jean-Karim Hériche, Franck Lebrin, Thierry Rabilloud,
Didier Leroy,* Edmond M. Chambaz, Yves Goldberg¥

Timely deactivation of kinase cascades is crucial to the normal control of cell signaling
and is partly accomplished by protein phosphatase 2A (PP2A). The catalytic («) subunit
of the serine-threonine kinase casein kinase 2 (CK2) bound to PP2A in vitro and in
mitogen-starved cells; binding required the integrity of a sequence motif common to
CK2a and SV40 small t antigen. Overexpression of CK2«a resulted in deactivation of
mitogen-activated protein kinase kinase (MEK) and suppression of cell growth. More-
over, CK2a inhibited the transforming activity of oncogenic Ras, but not that of con-
stitutively activated MEK. Thus, CK2a may regulate the deactivation of the mitogen-

activated protein kinase pathway.

Down-regulation of the mitogen-activated
protein kinase (MAPK) cascade is crucial
to normal growth control. PPZA plays an
important role in this process by dephos-
phorylating the activating site in MAPK as
well as in the enzyme that activates MAPK,
MEK (MAPK or extracellular signal-regu-
lated kinase kinase) (1). The core PP2A
enzyme is a dimer of one caralytic (PP2Ac)
and one regulatory (PR65/A) subunit; an
additional, variable regulatory (B) subunit

binds to PR65 and confers substrate speci-
ficity to the dephosphorylating activity (2).
The SV40 virus—encoded small t antigen
substitutes for one type of B subunit, result-
ing in a decrease in phosphatase activity
toward MEK and an abnormal activation of
the mitogenic MAPK cascade (3).

CK2 is a widely expressed, conserved
serine-threonine kinase, the signaling func-
tion of which is obscure (4). Holoenzymic
CK2 is a constitutively active tetramer of
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catalytic (CK2a) and regulatory (CK2B)
subunits; a CK2B-free pool of CK2a also
exists (5, 6). The region of small t antigen
required for binding of PP2A (3) contains a
sequence motif (HENRKL) that is also
found between subdomains VIB and VII of
the CK2a kinase domain, on what corre-
sponds to a noncatalytic, solvent-exposed
loop connecting B strands 7 and 8 in the
known kinase structures (7) (Fig. 1A). The
motif is conserved in CK2a chains from
Drosophila to humans, but not in other ki-
nases. The sequence was mutated as indi-
cated in Fig. 1A, and glutathione-S-trans-
ferase (GST) fusion proteins were made
with both wild-type and mutant CK2a and
tested for binding to purified core PP2A in
vitro. PP2A specifically bound to GST-
CKZa or to the catalytically inactive mu-
tant GST-CK2aK ™, but not to the mutant
with an altered binding domain, GST-
CK2aBD (Fig. 1B). The binding-deficient
mutant had the same kinase activity as wild
type (8), ruling out a major denaturing ef-
fect of the mutation on the structure of the
CK2a molecule. Although the region of
CK2a required for binding to the CK2ZB
subunit is distinct from the HENRKL motif
(9), binding of recombinant CK2 to GST-
CK2a prevented subsequent binding of
PP2A (Fig. 1C). Thus, PP2A associates
with free CK2a, but not with holoenzymic
CK2.

In addition to binding, GST-CKla
could partially phosphorylate the PP2A
dimer on the PPZAc subunit (Fig. 1D).
However, the stoichiometry of phosphoryl-
ation [up to 0.1 mol of inorganic phosphate
(P,) per mole of PP2Ac] varied among dif-
ferent batches of PPZA, apparently because
of interference from contaminating proteins
(10). In the presence of adenosine triphos-
phate (ATP), GST-CK2a, but not GST-
CKZaK™, stimulated PP2A activity by 30
to 50%, when Raf-phosphorylated MEK1
was used as a PP2A substrate (Fig. LE).
Similar results were obtained with p-nitro-
phenylphosphate as phosphatase substrate
(10). Therefore, CK2a-catalyzed phospho-
rylation appeared to enhance PP2A activi-
ty. Because PP2A rapidly dephosphorylated
itself, under these conditions its activity
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could not be quantitatively correlated with
its phosphorylation stoichiometry, and the
degree of activation may be underestimated.

REPORTS

in vivo, hemagglutinin (HA) epitope—tagged
CK2a or CK2aBD was transiently expressed
in NIH 3T3 cells, then immunoprecipitated

To determine whether CK2a binds PP2ZA with an antibody to HA (anti-HA), and an-
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dimeric PP2A, then adsorbed onto
glutathione-Sepharose beads (718). After washing, the beads were analyzed by protein immunaoblotting
with anti-PP2Ac (79). (C) GST-CK2a was incubated with MBP-CK2p (20), then mixed with PP2A at the
indicated MBP-CK2@:PP2A molar ratio. After adsorption to beads, the amounts of MBP-CK2B and
PP2Ac bound to GST-CK2a were analyzed by immunoblotting with anti-CK2B and anti-PP2Ac. (D)
Purified core PP2A was incubated with catalytically inactive or wild-type (WT) GST-CK2aq, in the
presence of [y-2*PJATP and okadaic acid (1 uM) (75). After boiling in 1% SDS, PP2Ac was immuno-
precipitated and analyzed by SDS-PAGE and autoradiography. (E) The indicated mixtures were prein-
cubated, then assayed for dephosphorylation of Raf-phosphorylated, *2P-labeled His-MEK1 (27).
Shown is the mean loss (+SD) in MEK1 phosphorylation, relative to input (0 = 3) (22).
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and binding-deficient CK2a-HA immunopre-
cipitates. Independent immunoprecipitates
were incubated for the indicated times with *2P-labeled His-MEK1 (76). His-MEK1 dephosphorylation
was guantitated as in Fig. 1E. (D) The indicated numbers of cells were transfected with wild-type or
control plasmids, immunoprecipitated with anti-HA, and the CK2a-HA-associated phosphatase activity
was measured as the excess MEK1 dephosphorylation obtained with wild-type versus control precip-
itate (n = 3) (24). (E) **P-labeled His-MEK1 was incubated for 5 min with the indicated anti-HA
immunoprecipitates (716), and MEK1 dephosphorylation was measured as above and normalized to the
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alyzed by immunoblotting. Coprecipitating
PPZA was associated with the wild-type, but
not the mutant, CK2a protein (Fig. 2A). By
32P labeling the CK2a immunoprecipitate in
an autophosphorylation reaction, a band of
similar size to PP2ZAc was also detected, which
could be reimmunoprecipitated with anti-
PP2Ac (Fig. 2B). Immunoprecipitates of over-
expressed wild-type CK2a contained activity
that dephosphorylated MEK1 at a rate signif-
icantly higher than activity from CK2aBD
immunoprecipitates (Fig. 2C). The phospha-
tase activity component specific to wild-type
CK2a was dose-dependent (Fig. 2D) and was
abolished by 10 nM okadaic acid, a specific

inhibitor of PP2A (Fig. 2E). The MEK1 phos-
phatase activity associated with catalytically
inactive CK2a was lower than that in wild
type (Fig. 2E), possibly because CK2a kinase
activates PP2A (Fig. 1E). To determine if

endogenous CK2a also exists in a complex .

with PP2A, we immunoprecipitated PP2Ac
from resting or growth factor-stimulated NIH
3T3 cells. CK2a was detected in PP2Ac im-
munoprecipitates from quiescent cells but not
from cells that had been treated for 10 min
with platelet-derived growth factor (PDGF)
(Fig. 3). Thus, CK2a might be a signal-re-
sponsive regulator of PP2A, raising the possi-
bility that CK2a might affect MEK1 activity.

MW

Fig. 3. Mitogen-sensitive association between endogenous CK2a and PP2A. PP2Ac was immunopre-
cipitated from NIH 3T3 cells that had been serum-deprived for 20 hours, then mock-treated (A and B)
or stimulated with PDGF B-B (50 ng/ml) (R&D) (C). The immunoprecipitation in (B) was blocked with
excess immunogenic peptide. The immunoprecipitates were resolved on two-dimensional gels, as
described (25), and analyzed by protein immunoblotting with anti-CK2a (26). All blots were treated
together with identical development of the luminescent reaction. Longer exposure of the blots showed
a reduced amount of CK2a in the PDGF-treated condition (70). Arrows: CK2a isoforms.
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were scored after 2 weeks.
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Recombinant CKZa did not inhibit
MEK1 directly (10). However, overex-
pressed wild-type, but not mutant, CK2a
inhibited the serum-stimulated activity of
either cotransfected His-tagged MEK1 (Fig.
4A) or cotransfected HA-tagged MAPK
(10). (The basal activity of MEK1 or
MAPK was too low for evaluating its sen-
sitivity to CK2a.) These results suggest that
binding of kinase-active CK2a to PP2A
may enhance PPZA activity toward MEK1
in vivo.

We selected cells that stably overex-
pressed CK2a. Expression of wild-type
CK2a reduced cloning efficiency (Fig. 4B).
This effect was partially reverted by co-
transfection with wild-type MEK1 (Fig.
4C). In focus-formation assays, the out-
growth of cells transformed with RasV!?
[which uses activation of endogenous MEK
as an effector (11)] was reduced by about
60% upon cotransfection of CK2a (Fig.
4D). The comparatively weak transforming
activity of a constitutively activated
MEK1P?18:222 myrant (11) was insensitive
to CK2a. These results are consistent with
the hypothesis that negative regulation of
MEK1 is instrumental to the effect of CK2a
on growth.

CK2 is required for cell proliferation
(12). In transgenic mice, CK2a cooperates
with the Myc and Scl oncogenes for the
development of lymphomas (13). From our
results, however, it appears that CK2Za can
negatively regulate cell proliferation. One
possible explanation for this apparent para-
dox is that the form of CK2a that binds
PP2A, and that inhibits growth, is likely free
of CK2B (Fig. 1C) (6) and may thus differ
from the growth-promoting form (holoenzy-
mic CK2) (12). Further, because the physi-
ological function of MEK varies with cellu-
lar context, the net proliferative effect of
CK2a may also differ according to cell type.
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Structures of the Tyrosine Kinase Domain
of Fibroblast Growth Factor Receptor
in Complex with Inhibitors

Moosa Mohammadi, Gerald McMahon, Li Sun, Cho Tang,
Peter Hirth, Brian K. Yeh, Stevan R. Hubbard,”
Joseph Schlessinger*

A new class of protein tyrosine kinase inhibitors was identified that is based on an
oxindole core (indolinones). Two compounds from this class inhibited the kinase activity
of fibroblast growth factor receptor 1 (FGFR1) and showed differential specificity toward
other receptor tyrosine kinases. Crystal structures of the tyrosine kinase domain of
FGFR1 in complex with the two compounds were determined. The oxindole occupies
the site in which the adenine of adenosine triphosphate binds, whereas the moieties that
extend from the oxindole contact residues in the hinge region between the two kinase
lobes. The more specific inhibitor of FGFR1 induces a conformational change in the
nucleotide-binding loop. This structural information will facilitate the design of new
inhibitors for use in the treatment of cancer and other diseases in which cell signaling
by tyrosine kinases plays a crucial role in disease pathogenesis.

Protein tyrosine kinases (PTKs) are critical
components of signaling pathways that con-
trol cell proliferation and differentiation.
Enhanced PTK activity due to activating
mutations ot overexpression has been im-
plicated in many human cancers (). Thus,
selective inhibitors of PTKs have consider-
able therapeutic value (2). Although a
number of compounds have been identified
as effective inhibitors of specific PTKs, the
precise molecular mechanisms by which
these agents inhibit PTK activity have not
been elucidated.

Fibroblast growth factors (FGFs) play
important roles in embryonic development,
angiogenesis, wound healing, and malig-
nant transformation (3). The diverse effects
of mammalian FGFEs are mediated by four
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transmembrane receptors (FGFR1 through
FGFR4) with intrinsic PTK activity (4).
Activating mutations in FGF receptor
genes have been implicated in various hu-
man skeletal disorders such as Crouzon syn-
drome (5), achondroplasia (6, 7), and
thanatophoric dysplasia (7, 8). Inappropri-
ate expression of FGFs or activation of FGF
receptors could contribute to several human
angiogenic pathologies such as diabetic ret-
inopathy, rheumaroid arthritis, atheroscle-
rosis, and tumor neovascularization (9).
Moreover, genes encoding FGFR1 and
FGFR2 were shown to be amplified in a
population of breast cancers (10). verex-
pression of FGF receptors has also been
detected in human pancreatic cancers (11),
astrocytomas (12), salivary gland adenosar-
comas (13), Kaposi’s sarcomas (14), ovarian
cancers (15), and prostate cancers (16).
We identified a new family of inhibitors
for receptor tyrosine kinases by screening a
library of synthetic compounds. A new class
of PTX inhibitors was generated by attach-
ing different chemical substituents to an
oxindole core (indolinones). These com-
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