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lated materials (5). 
Oxides of transition metals have some 

advantages over aluminosilicate materials 
for use in electromagnetics, photoelectron-
ics, and catalysis because transition metal 
atoms can exist in various oxidation states. 
However, syntheses and structures of tran
sition metal oxides can be.much more com
plicated than oxides of main group metals 
because of the multitude of different coordi
nation numbers and oxidation states. Meso
porous structures of transition metals doped 
into aluminosilicates [Cr (6)] or transition 
metal oxides such as Ti (7), V (8), W (3, 5), 
Zn (9), Nb (10), and Ta (11) have been 
reported. Most of these transition metal ox
ide mesoporous materials are insulators with 
transition metals in isolated oxidation states. 

Manganese Oxide Mesoporous Structures: 
Mixed-Valent Semiconducting Catalysts 

Zheng-Rong Tian, Wei Tong, Jin-Yun Wang, Nian-Gao Duan, 
Venkatesan V. Krishnan, Steven L. Suib* 

Hexagonal and cubic phases of manganese oxide mesoporous structures (MOMS) have 
been prepared by means of the oxidation of Mn(0H)2. The hexagonal MOMS materials 
form a hexagonal array of pores with an open porous structure, thick walls (1.7 nano
meters), and exceptional thermal stability (1000°C). The walls of the mesopores are 
composed of microcrystallites of dense phases of Mn203 and Mn304, with Mn06 oc-
tahedra as the primary building blocks. The calcined hexagonal MOMS have an electrical 
conductivity of 8.13 x 10~6 per ohm-centimeter, an average manganese oxidation state 
of 3.55, and a band gap of 2.46 electron volts. Catalytic oxidations of cyclohexane and 
n-hexane in aqueous solutions in a batch reactor show conversions of —10 and ~8 
percent, respectively. Characterization and catalytic data suggest that MOMS systems 
show significant enhancement in thermal stability with respect to octahedral molecular 
sieve materials. 
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The generation of mixed-valent transition - 
metal oxide mesoporous materials might lead 
to versatile systems for redox catalysis and 
battery applications (1 2). 

The wall materials of the mesoporous 
aluminosilicate and transition metal oxide 
materials discussed above are believed to be 
composed of noncrystalline amorphous 
phases (1, 3, 13), that is, the materials can 
be viewed as glasses with ordered pores. 
There is considerable interest in determin- 
ing the coordination numbers of the metal - 
atoms (primary structure) and local struc- 
ture of the wall materials (secondarv struc- 
ture) because the amorphous (local struc- 
ture) nature of the walls has been largely 
unexplored. 

We report here the synthesis of semicon- 
ducting mixed-valent manganese oxide meso- 
porous structures (MOMS), which are be- 
lieved to consist of crvstalline wall material 
and are related to octahedral molecular sieve 
(OMS) materials (1 2, 14, 15). Mixed-valent 
MOMS systems may represent a distinct fam- 
ily of mesoporous materials. 

Cetyltrimethylammonium bromide (CTAB) 
cationic surfactants were used as micellar tem- 
plates in water. Air and inexpensive chemi- 
cals (MnC12 and NaOH) were used as starting 
materials (16). Precursors were prepared by 
two distinct steps: (i) the formation of a lay- 
ered phase of Mn(OH), and the generation of 
an aqueous solution of &-factant in a separate 
system (16) and (ii) the mixing of the two 
systems such that the crystallites of layered 
Mn(OH), reacted with the surfactants. lead- 

' .&  
ing to the formation of a mesoporous phase 
(16). The crystalline layered phase of 
Mn(OH)2 was then mildly oxidized in air to 
form a mixed-valent manganese oxide shell 
(16). Finally, surfactant templates were re- 
moved by further oxidation during calcina- 
tion, leading to the formation of a semicon- 
ducting mesoporous material (16). The con- 
trol of the primary building block units and 
oxidation processes are the basis for develop- 
ine our svntheses. - 

If the mixing step is done in air, some 
Mn2+ present in Mn(OH), can be readily 
oxidized to Mn3+ and Mn4+ (1 2, 14, 15). 
This type of oxidation process has been 
observed in manv of the svntheses of man- 
ganese oxide OMS phases, where mixtures 
are white [Mn(OH)2] under N2 atmosphere 
but brown (Mn02, Mn203, or Mn304) un- 
der oxidizing atmospheres. The cylindrical 
micelles then react with two different build- 
ing blocks [Mn(OH), and MnO,]. The ox- 
idative atmosphere used during synthesis 
also provides a pathway to mixed valency 
and the possibility of forming edge-shared 
MnO, octahedra. 

The Mn(OH), is a white, layered crys- 
talline material built from the edge-sharing 
of [Mn(OH),I4- octahedral clusters (17). 

Oxidation of Mn(OH)2 can readily produce 
brown to dark-gray phases of manganese ox- 
ides (1 7). The negatively charged building 
blocks of [Mn(OH)J4- of the Mn(OH), 
microcrystallites have a higher probability of 
binding to positively charged surfactant head 
groups than of binding to one another. This 
bias may limit the size of the Mn(OH)2 
crystallites. The Mn(OH)2 crystallites oxi- 
dize in air in the Dresence of surfactant much 
more quickly tha i  they do in the absence of 
surfactant because the smaller Mn(OH), . ,&  

particles react with O2 faster and more com- 
pletely. Microcrystallites of Mn(OH)2 react 
with surfactants to eventually form meso- 
porous phases by means of self-assembly, 
with the help of large, cylindrical micelle 
templates. 

Our x-ray diffraction (XRD) patterns 
(18) of the resultant solids (Fig. 1) suggest 
that the primary building blocks are octa- 
hedral MnO, units that link together to 
~roduce crvstalline wall material. Similar 
XRD patte&s were observed for these ma- 
terials after heatine to 1000°C. - 

Calcined samples prepared with a 
CTAB concentration of 28 weight % have 
arrays of pores of hexagonal shape (Fig. 2). 
This hexagonal symmetry is believed to be 
due to the organization of micelles, not the 
geometry of the primary building blocks of 
manganese oxide. The high degree of order- 
ing is in direct contrast to reports of M41S 
mesopore systems (1, 3) and OMS systems 
(12, 14, 15). Electron paramagnetic reso- 
nance (EPR) data (18) suggest that the 
primary building blocks of the wall materi- 
als are octahedral MnO, units. 

Argon sorption data (19) (Fig. 3) from 
Brunauer, Emmett, and Teller (BET) mea- 
surements and pore-size distribution data 
show that mesopores exist in these materi- 
als, and XRD, transmission electron micros- 

- 

1 3 5 7 9 
28 (degrees) 

Fig. 1. (Curve A) XRD pattern of the uncalcined 
hexagonal MOMS-1. Note the strong (100) peak 
(d = 4.7 nm) and small (1 10) peak (d = 2.7 nm). 
(Curve B) XRD pattern of calcined hexagonal 
MOMS-1. The positions of the (100) and (1 10) 
peaks shifted to lower d spacings, and the peak 
intensities decreased. (Inset) The XRD patterns of 
calcined samples show two additional broad 
peaks (d = 0.50 and 0.30 nm), which are Mn,O, 
(gamma phase) and Mn,O, (hausmannite) micro- 
crystallite phases. 

copy (TEM), and EPR data show that these 
are hexagonal MOMS materials, hereafter 
called MOMS-1. Cubic-phase XRD pat- 
terns were observed for materials prepared 
with a CTAB concentration of 10 weight 
%, with two peaks for the as-prepared ma- 
terial but seven peaks after calcination at 
600°C (18). The surface area for this cal- 
cined cubic sample is 46 m2 g-l. This cubic 
phase will hereafter be referred to as 
MOMS-2. 

The wall thickness of the mesopores, 
about 1.7 nm, was deduced from the inter- 
lattice d spacing of the (100) reflection (4.7 
nm in Fig. 1A) and the pore diameter (3.0 
nm) determined for the hexagonal MOMS-1 
material. These data suggest that MOMS-1 
consists of thick walls. The walls of 
MOMS-1 are also more dense than the walls 
of M41S materials, because Mn atoms are 
heavier than Si and A1 atoms and the edge- 
shared MnO, octahedra are more tightly 
packed than the more flexible vertex-shared 
Si04 and A104 tetrahedra. Subsequent oxi- 
dation of the manganese oxide wall materials 
is necessary for formation of edge-shared 
structures (1 7). Too much reduction to 
Mn2+ or to Mn3+ leads to reduced nonpo- 
rous materials. Comer-shared tetrahedra are 
expected to be more flexible than edge- 

Fig. 2. (A) Lattice morphology of the calcined 
hexagonal MOMS-1 (CTAB concentration = 
28%) shown by HRTEM. Ctystallites with an aver- 
age particle size of 200 A are obse~ed  with no 
evidence of any other phase. (B) Convergent 
beam electron diffraction (CBED) pattern of the 
calcined hexagonal MOMS-1 showing hexagonal 
symmetry. The nonidea1120° angles for the MnO, 
octahedral building blocks suggest some stack- 
ing stress in these systems. Ordering of MOMS-1 
in two dimensions shows nine orders of obsewed 
reflections. Stacking faults and twinning, ob- 
served in some OMS systems, were not obsewed 
in MOMS-1 or MOMS-2. 
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shared octahedra. A large number of rela- 
tively rigid edge-shared MnO, octahedra 
may be needed to form a hexagonal 
MOMS-1 array. Similar thick, dense walls 
are proposed for the cubic MOMS-2 materi- 
als on the basis of corresponding XRD, high- 
resolution TEM (HRTEM), and adsorption 
data. 

The shapes of the hysteresis loop in the 
adsorption-desorption isotherms of the cal- 
cined samples (Fig. 3B) are indicative of 
lnesopores that are poorly defined (20) and 
may fiirther support the thick and dense 
wall structure for MOMS-1. The  Ar  sorp- 
tion data at low relative pressure (PIPc - 
loPi)  (Fig. 3 A )  suggest that no micropores 
are present in these systems. The adsorption 
data further support data from XRD and 
HRTEM experiments that suggest that nei- 
ther crystalline nor amorphous (1 5) micro- 
porous impurity phases are present in 
MOMS-1 or MOMS-2. 

The average oxidation state (AOS) of 
MOMS-1 (Table 1 )  changes from a major- 
ity of 31 before oxidation to a majority of 
4+ after calcination. Changes in AOS are 
related to the ability of MnO, units to form 
mixed-valent microporous ( 12, 14, 15) and 
mesoporous systems by means of edge and 
vertex sharing. 

The conductivities (22) of MOMS-1 be- 
fore and after calcination are 5.0 x lo-' and 
8.1 x (ohrn.cm)-l, respectively. Dif- 
fuse-reflectance ultraviolet-visible (DRUV- 
Vis) data (21) of the as-prepared MOMS-1 
sample show an absorption at 390 nm, cor- 
responding to a band gap (23) of 3.18 eV. 
The calcined MOMS-1 sample sho~vs a 
DRUV-Vis peak at 505 nm, corresponding 
to a band gap of 2.46 eV. The conductivity 

of the calcined MOMS-2 cubic phase is 
2.28 x 10P"ohm.cm)P'. Conductivities 
of the calcined MOMS-1 and MOMS-2 
salnples show temperature-dependent 
semiconducting behavior. Fermi level 
shifts (23)  due to quantum size effects for 
M n 2 0 3  and M n 3 0 4  microcrystallites and 
the mesopore size of -3.0 n m  may have 
some effect on  the conductivity. The  con- 
ductivity of microporous todorokite-type 
OMS-1 crystalline phases (14) with simi- 
lar A O S  values of 3.5 (MOMS-1 = 3.55) 
is about 2 X (ohm.cm)-I [MOMS- 
1 = 8.13 x 1 0 - ~ 0 h m . c m ) - ' ] ,  and piire 
dense-phase M n 2 0 ,  has a conductivity of 
5.0 x 10-' (ohm.cm)-l. Calcined 
MOMS-1 thus has a higher conductivity 
than synthetic todorokite, although both 
have similar A O S  values, suggesting that 
special structiiral features of MOMS-1 may 
play a n  important role in the electrical 
conduction. 

Oxidation with air converts the Mn2' in 
the surfactant Mn(OH)2  material into 
Mn3' and Mn4' as it does in microporous 
OMS materials. The  Mn(OH),  layers clos- 
est to the micelle may not be reached by O2 
because of diffusion limitations of 0, 
through unusually thick and dense walls in 
the initial mild oxidation step. In the fol- 
lowing oxidation step, the structure may be 
stabilized by strong bonding of the nega- 
tively charged innermost Mn(OH)2  layers 
to the positively charged surfaces of surfac- 
tant micelles. The structure may be fiirther 
stabilized during calcination by the forma- 
tion of hexagonal arrays of thermally stable 
outer MnOz layers. The color change from 
brown (Mn3+) before calcination to almost 
black after calcination suggests that 

4Oi~~-' 
0.151c 

Fig. 3. (A) Low-relative pressure Ar sorption iso- - 
g 1 therm for the calcined hexagonal MOMS-I ; V is 
E 30; j - 0,101 1 the volume adsorbed per gram of MOMS-1 Sat- 
> 

2 0 ~ ~ ~  uration is reached at low relative pressure (P/P, - 
10 20 30 

PIP, (XI 0,000) 
10-7, Relatively ow surface areas (I70 mZ g-l) 
are related to the dense, thick wall structure and 

0.00 1 are similar to microporous crystalline OMS phases 
%40 O 20 40 (12, 14. 15) and mesoporous manganese nodules 
E 

' (27). Classical surface areas may not be truly rep- : 20 resentative for materials with transition metals like MOMS: A density- 
normalized surface area may be more appropriate. The density-normal- 

o," o,2 0,4 0.6 0,8 ized surface areaof MOMS-I is 886 mz ~ m - ~  and that of MOMS-2 is 250 PIP, 
m2 ~ m - ~ .  (B) N2 sorption hysteresis for the calcined hexagonal MOMS-1. 

A clear hysteresis loop for adsorption-desorption is observed. (C) Pore size (radius r )  distribution for the 
calcined hexagonal MOMS-I . The broad peak at about 30 A is indicative of mesopores. 

Table 1. Ratios of Mnz-:Mn3-:MnL+, average oxidation states, conductivities, and band gaps for 
uncalcined and calcined hexagonal MOMS-I . 

MOMS-I Ratio of Average oxidation Conductivity Band gap 
Mn2- :Mn3+:MnL-  state (AOS) (ohman-l  (ev ) 

Uncalcined 1 :8.60:2.37 3.1 1 5.0 X 3.18 
Calcined 1 :21.7:30.2 3.55 8.13 x 2.46 

the removal of surfactant during calcination 
was accompanied by further oxidation of 
wall material. Such color changes are in 
agreement with our proposal that the pri- 
mary structural units are MnO, units and 
that crystalline dense-phase microcrystal- 
lites of manganese oxides in the walls are 
the secondary structural units of the 
MOMS systems. This two-step oxidation 
mechanism is supported by several observa- 
tions, including changes in the color, AOS, 
conductivity, and band gap of the samples 
after calcination. 

Calcined samples heated to 1000°C 
show a 4% weight loss, as shown in ther- 
mogravimetric analysis ( T G A )  data (1 9 ) .  
This small weight loss may be due to the 
evolution of leftover surfactant or hydrox- 
yl groups. Differential scanning calorime- 
try (DSC) data (1 9 )  do not  show any clear 
phase changes for the heated calcined 
sample. The  DSC and TGA data suggest 
that surfactant molecules are not present 
in the calcined samples because melting of 
the surfactant phase was not observed. 
These thermal data suggest that the cal- 
cined hexagonal MOMS-l  structure is 
thermally stable to 1000°C, which is also 
in agreement with XRD studies. T h e  cubic 
MOMS-2 materials show similar TGA 
and DSC properties with thermally stable 
crystalline phases being observed up to 
1000°C. 

In microporous OMSs consisting of pri- 
mary MnO, building blocks, the thermal 
stability decreases as pore size increases. 
T h e  high thermal stability of these 
MOMS phases is unusual for manganese 
oxide systems. Fourier transform infrared 
(FTIR) data (1 9) for pyridine adsorbed on  
calcined MOMS-l  (Fig. 4)  suggest that 
there are two types of acid sites that co- 
exist on  the surface of calcined MOMS-1: 
The  surface is dominated by Lewis acid 
sites, which is usual for manganese oxide 
systems, as most crystalline microporous 
O M S  materials have an over~vhelming 
majority of Lewis acid sites. There is little 

Fig. 4. FTlR spectrum for the pyridine on calcined 
hexagonal MOMS-I showing an intense absorp- 
tion at 1460 cm-' and a considerably weaker 
absorption at 1540 cm-I . The peak at 1460 cm-l 
is due to Lewls acid sites and that at 1540 cm-I is 
due to a much smaller number of Bronsted acid 
sites. 
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information on  the acidity of M41S mate- 
rials (24) .  

However, temperature-programmed de- 
sorption (TPD) data for KH3 adsorbed on  
calcined MCM-41 systems (24) and similar 
data for MOMS-1 show significant differ- 
ences in the acidity of these two classes of 
materials. In the MCM-41 systems, the 
NH, TPD data mimicked behavior for 
amorphous silica aluminas with a relatively 
broad desorption. The  NH, TPD data for 
MOMS-1 show three distinct peaks: at 
21j°C, between 300' and 310°C, and at 
490°C. Such behavior is more typical for 
crystalline systems like zeolites and is in line 
with XRD data and the dense, thick struc- 
ture of the crystalline walls of MOMS. 

Data for the catalytic oxidation of cyclo- 
hexane (25) were obtained for calcined 
MOMS-1 (Table 2). The  catalytic oxida- 
tion of stable alkanes to more valuable 
products like alkyl alcohols and ketones 
under mild reaction conditions is known to 
be catalyzed by mixed-valent microporous 
manganese oxide OMSs (26). Reactions of 
hydrogen peroxide with alkanes in the pres- 
ence of manganese oxide OMS materials 
have been s t ~ ~ d i e d  (26), and the role of 
lattice oxygen in catalytic oxidations has 
also been discussed (14, 15). These catalyt- 
ic data suggest that MOMS-1 materials can 
function as active and selective oxidation 
catalysts and that total oxidation to C02 
can be avoided. 

Results of KH, TPD suggest that these 
reactions are driven by redox reactions, as 
previously suggested (12, 14, 15, 26) for 
microporous OMS systems. The catalytic 
data of Table 2 are also in line with sugges- 
tions of shape-selective redox catalysis at 
internal sites, because the smallest pore ma- 
tsrial, OMS-2, which has square pores (4.6 
A on a side, 6.5 A in diameter), is most 
active and selective in these oxidations 
(26). The activities apd selectivities yf 
large-pore OMS-1 (6.9 A on  an edge, 9.7 A 

Table 2. Yields for the oxidation of cyclohexane 
and hexane over calcined hexagonal MOMS-1 . 
The conversions for cyclohexane and n-hexane 
were 10.2 and 7.65%, respectively. No products 
were observed under similar reaction conditions 
when MOMS-I catalyst was absent. Dashes indi- 
cate that the product was not observed. 

Yield (%) 

Product Cyclohexane n-Hexane 
feed feed 

Cyclohexanol 2.6 - 

Cyclohexanone 5.5 - 

1 -Hexan01 - 0.16 
2-Hexanol - 1.64 
3-Hexanol - 1.19 
2- and 3-Hexanol - 3.01 

in diameter) are similar to those for the 
hexagonal MOMS-l materials. 

The total conversion and yields for n- 
hexane over MOMS-1 (Table 2) are prom- 
ising, indicating that the total conversion of 
hexane and the less-stable cyclohexane are 
similar. The yields of both 2- and 3-hexanol 
are about one order of magni t~~de  higher 
than the yield of 1-hexanol, probably be- 
cause of thermodynamic constraints. 

The  catalytic oxidation of alkanes 
shown here suggests that the mesoporous 
hexagonal phase is active because of a redox 
mechanism that is a direct result of the 
mixed valency and unusually high thermal 
stabilitv of MOMS materials. Future work 
should be aimed at ~lnderstanding the inter- 
actions between surfactant ~nolecules and 
Mn(OH),  materials, the nature of bonding 
in such systems, the effects of doping the 
wall phases, the local electronic environ- 
ments, and other kinds of applications. 
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Polarization-Enhanced NMR Spectroscopy of 
Biomolecules in Frozen Solution 

Dennis A. Hall, Douglas C. Maus, Gary J. Gerfen, 
Souheil J. Inati, Lino R. Becerra,* Frederick W. Dahlquist, 

Robert G. Griffin? 

Large dynamic nuclear polarization signal enhancements (up to a factor of 100) were 
obtained in the solid-state magic-angle spinning nuclear magnetic resonance (NMR) 
spectra of arginine and the protein T4 lysozyme in frozen glycerol-water solutions with 
the use of dynamic nuclear polarization. Polarization was transferred from the unpaired 
electrons of nitroxide free radicals to nuclear spins through microwave irradiation near 
the electron paramagnetic resonance frequency. This approach may be a generally 
applicable signal enhancement scheme for the high-resolution solid-state NMR spec- 
troscopy of biomolecules. 

Sensitivity often dictates the feasibility of 
solid-state NMR ( 1 )  studies on chemical 
and bioloeical svstems, The small nuclear 

u 

Zeeman energy splittings result in corre- 
spondingly small nuclear spin polarizations 
at thermal equilibrium. For example, pro- 
tons exhibit a thermal equilibrium spin po- 
larization of <0,01% at 5 T and 300 K. 

We describe here a method that can 
substantially improve the sensitivity of 
high-resolution solid-state NMR spectros- 
copy of biomolecular systems in frozen glyc- 
erol-water solutions. We have obtained sig- 
nal enhancements of up to - 100 in the 13C 

spectra of the amino acid arginine and -50 
in the 15N spectra of the 18.7-kD protein 
T4-iysozyme, which correspond to a large 
decrease in signal averaging time or sample 
size requirements, or both, Alternatively, 
this approach may permit the routine appli- 
cation of the expanding repertoire of mul- 
tidimensional homo- and heteronuclear re- 
coupling techniques ( 2 )  for performing 
spectral assignments and determining struc- 
tural constraints in biomolecular systems 
such as large soluble proteins, nucleic acids, 
and membrane proteins, 

Dvnamic nuclear ~olarization IDNP) 
(3)  is used to transfer the high spin polar- 
ization of un~aired electrons to cou~led  nu- 
clear spins through microwave irradiation 
at or near the electron ~aramaenetic reso- - 
nance (EPR) frequency, Under optimal 
conditions, NMR signal intensities can be 
increased by the ratio of the electronic and 
nuclear Larmor frequencies, corresponding 
to factors of -660 and -2600 for 'H and 
13C spins, respectively* 

A number of signal enhancement 
schemes have recently been utilized in 
NMR spectroscopy, including optical 
pumping of quantum wells (4), photochem- 
icallv induced DNP of ~hotosvnthetic reac- 
tion centers (5),  polarization transfer from 
optically polarized xenon (4, 6) to surface 
and solution spins, and DNP of diamond, 
coal, and polymer systems doped with aro- 
matic free radicals (7-9). These approaches 
have all proven successful for polarizing spe- 
cific systems, but no method has yet been 
demonstrated to be generally applicable to 
macromolecular biological systems. Our 
DNP enhancement scheme uses a frozen 
aqueous (60:40 glycerol-water) solution 
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used as a cryoprbtectant for protein samples 
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pulse sequence (Fig, I ) ,  polarization is first 
transferred from the 4-amino-TEMPO free 
radical to 'H spins under microwave irradi- 
ation. Irradiation on the order of the nuclear 
spin-lattice relaxation time (TI) is required 
for maximal polarization buildup. Proton 
spin diffusion distributes the enhanced mag- 
netization throughout the solvent and solute 
during the irradiation period. Finally, a stan- 
dard CP pulse sequence (1 3) transfers the 
high 'H polarization to rare spins (typically 
13C or 15N) for observation. The magnetic 
field is chosen to maximize the experimen- 
tally determined electron-to-proton polariza- 
tion transfer efficiencv 11 4). ,~ , 

Several mechanisms of electron-proton 
polarization transfer exist. In these experi- 
ments using 40 mM 4-amino-TEMPO in 
water-glycerol, DNP primarily proceeds 
through a thermal mixing mechanism (8, 
15), in which irradiation off the center of the 
EPR line coupled with electron-electron 
cross-relaxation ~erturbs the electronic dino- 
lar reservoir from thermal equilibrium. The 
nuclear spins become polarized through their 
coupling to the electronic dipolar reservoir. 
This coupling is induced by simultaneous 
spin flips of two electron spins differing in 
resonance frequency by the nuclear Zee- 
man splitting driving a nuclear spin flip 
( 1  6). Thermal mixing involves irradiation 
of an allowed EPR transition, in contrast 
to another DNP mechanism, the solid ef- 
fect, in which weak, second-order elec- 
tron-nuclear spin flips are driven (8). 
Thermal mixing therefore requires less mi- 
crowave power to achieve maximal en- 
hancement, particularly in high magnetic 
fields where the probability of the solid 
effect transition is severelv attenuated. 

Fig. 1. Diagram, of the DNP-CP pulse sequence. 
Initially, electronic polarization is transferred to 
proton spns by microwave irradiation for a period 
on the order of the ' H T, . The magnetic field IS set 
to maxmize the efficiency of poarzation transfer. 
The proton polarizaton IS then transferred to the 
rare nuclear splns (lSC or 15N) by a standard 
cross-polarization sequence. F~nally, the '% or 
15N spectrum IS acqured while continuous-wave 
' H decoupling IS performed. 
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