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Functionalized Monolayers on Ordered 
Meso porous Supports 

X. Feng, G. E. Fryxell, L.-Q. Wang, A. Y. Kim, J. Liu,* 
K. M. Kemner 

Mesoporous silica materials containing functionalized organic monolayers have been 
synthesized. Solid-state nuclear magnetic resonance suggests that a cross-linked 
monolayer of mercaptopropylsilane was covalently bound to mesoporous silica and 
closely packed on the surface. The relative surface coverage of the monolayers can be 
systematically varied up to 76 percent. These materials are extremely efficient in re- 
moving mercury and other heavy metals from both aqueous and nonaqueous waste 
streams, with distribution coefficients up to 340,000. The stability of these materials and 
the potential to regenerate and reuse them have also been demonstrated. The surface 
modification scheme reported here enables rational design of the surface properties of 
tailored porous materials and may lead to the synthesis of more sophisticated func- 
tionalized composites for environmental and industrial applications. 

T h e  synthesis of mesoporous silica has 
greatly expanded the possibilities for the 
design of open pore structures (1, 2). Be- 
cause of their large surface area and well- 
defined pore size and pore shape, these ma- 
terials have great potential in environmen- 
tal and industrial processes. However, many 
applications (such as adsorption, ion ex- 
change, catalysis, and sensing) require the 
materials to have specific attributes such as 
binding sites, stereochemical configuration, 
charge density, and acidity (3). Here, we 
report the formation of organic monolayers 
within ordered mesoporous silica and show 
that these functionalized layers confer spe- 
cific adsorption behavior for heavy metal 
ions. 

Functional groups (thiol groups in this 
case) were introduced to the pore surface of 
mesoporous silica as the terminal groups of 
organic monolayers. The hydrocarbon 
chains aggregated and formed close-packed 
arrays on the substrate. The siloxane groups 
then underwent hydrolysis and ultimately 
became covalently attached to the substrate 
and cross-linked to one another. This ma- 
terial, called functionalized monolayers on 
mesoporous supports (FMMS), can effi- 
ciently remove mercury and other heavy 
metals (such as lead and silver) from con- 
taminated aqueous and organic solutions. 
The distribution coefficient, Kd, has been 
measured to be as high as 340,000. [Kd is 
defined as the amount of adsorbed metal (in 
micrograms) on 1 g of adsorbing material 
divided by the metal concentration (in mi- 
crograms per milliliter) remaining in the 
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treated waste stream.] 
Mesoporous silica materials were synthe- 

sized in cetyltrimethylammonium chloride/ 
hydroxide (CTACIOH), silicate, and mesity- 
lene solutions (1, 4). The calcined meso- 
porous silica has a surface area of>00 m2 g-l 
and an average pore size of 55 A, as deter- 
mined by the gas adsorption technique and 
transmission electron microscopy (TEM). To 
prepare the FMMS material, we mixed tris- 
(methoxy)mercaptopropylsilane (TMMPS) 
with mesoporous silica in an appropriate sol- 
vent (5). We selected TMMPS because it has 
been used previously to make functionallzed 
monolayers (6) and the thiol groups have a 
high affiiity for binding metals. The stoichi- 
ometry was based on the measured surface 
area (900 m2 g-') and the assumption of 5 x 
10" molecules per square meter in a fully 
dense monolayer coverage, as indicated by 
previous solid-state nuclear magnetic reso- 
nance (NMR) studies (7). This mixture was 
stirred at room temperature overnight and 
then heated to reflux for 4 hours. After cool- 
ing to room temperature, the mixture was 
filtered, washed copiously with 2-propanol to 
rinse away any surplus TMMPS, and then 
dried under vacuum. 

The population density and the quality 
of the functionalized monolavers on the 

layer. Ideally, just enough water for the 
siloxane hydrolysis would be associated 
with the surface. The presence of free water 
is detrimental to the efficient formation of a 
clean monolayer because of polymerization 
of TMMPS in solution (9). . , 

To optimize reaction conditions for de- 
positing alkoxysilane-based monolayers on 
mesoporous silica, we carefully rehydrated 
the silica surface. controlled the amount of 
surface adsorbed hater, and used the proper 
solvent. Benzene and toluene were found to 
be optimum both for forming organic 
monolayers and for removing excess water 
through an azeotrope. Excess silane (at least 
fivefold) was used relative to the available 
surface area and the reaction mixture was 
boiled. The relative surface coverage was 
estimated on the basis of ti) the surface area 
of the support, (ii) the weight change after 
the functionalized monolayers were at- 
tached, and (iii) the ideal loading density 
that could be achieved on flat surfaces. 
These results were also verified by electron 
energy-dispersive spectroscopy (EDS). We 
systematically varied the population densi- 
ties of functional groups on the mesoporous 
materials from 10 to 76% of full surface 
coverage. Because we used short chain al- 
kane thiols to avoid blocking the pore 
channels, a monolayer coverage of 76% on 
mesoporous silica is considered a good re- 
sult. Shorter molecules pack less efficiently 
than do longer molecules because of re- 
duced van der Waals interactions between 
the pendant chains (10). A systematic il- 
lustration of the FMMS material is shown 
in Fig. 1, with each functional group bind- 
ing one metal ion. 

The FMMS material is a useful environ- 
mental remediation agent because it has a " 
high affinity for binding mercury and other 
heavy metals. As shown by a TEM micro- 
graph of FMMS with 76% coverage after 

mesoporous materials are greatly affected by 
two factors: the population of silanol groups 
and the number of adsorbed water mole- 
cules on the mesoporous silica surface. The 
silanols anchor the organic molecules to the 
silica surface. However, the calcining step 
used in preparing mesoporous silica dehy- 
drates the silica surface and removes most of I 

the silanols, which results in poor surface Fig. ,. Schematic drawing of FMMS. One end 
(8). A proper amount of adsorbed group of the functionalized monolayers is co- 

surface water is a l s ~  important because the valently bonded to the silica surface and the other 
hydrolysis reaction is one of the critical first end group can be used to bind heavy metals or 
steps in the process of building the mono- other functional molecules. 
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contact with a solution containing mercury 
ions (Fig. 2A), the ordered porous struc- 
tures were preserved in the chemical treat- 
ment processes for attaching the function- 
alized monolayers. Although most mercury 
was evaporated under the electron beam 
and therefore was not visible in the TEM 
image, some mercury was detected in the 
EDS spectrum (Fig. 2B). The EDS also 
detected sulfur from the thiol group. Com- 
positional analysis indicates that the rela- 
tive concentration for sulfur and silica is 5.2 
mmol per gram of silica, which is in excel- 
lent agreement with the gravimetric esti- 
mate (5.6 mmol per gram). 

The structure of the functionalized 
monolayers and the chemical bonding can 
be studied by solid-state NMR experiments 
(1 1 ). A Chemagnetics NMR spectrometer 
was used for the NMR experiments (12). 
Single-pulse (SP) 13C NMR spectra and 
peak assignments [Si-CH2(3)-CH2 (2)- 
CHZ(1)-SH] for samples with 25%, 76%, 
and mercury-laden 76% coverage of func- 
tionalized monolayers on mesoporous sili- 
cates, respectively, are shown in Fig. 3. For 
25% coverage (Fig. 3A), the peak at 12.8 
parts per million (pprn) was attributed to 
the methylene carbon group C3, directly 
bonded to the Si atom. The peak at 28.3 
pprn was attributed to the other two meth- 
ylene carbons (C2 and Cl ) .  An additional 
peak at 24.7 pprn (Fig. 3B) was observed for 
76% coverage. This peak was assigned to 
the methylene carbon ( C l )  next to the -SH 
group on the basis of the chemical shifts 
reported for CH,(CH,),SH (1 1 ). 

The difference between Fig. 3A and Fig. 
3B is attributable to a different molecular 
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Fig. 2. A TEM micrograph (A) and EDS spectrum 
(B) of the mercury-laden FMMS. Mercury and sul- 
fur on the organic layers can be observed on the 
EDS spectrum. 

conformation for the organic monolayers at 
different coverages. At low surface cover- 
age, the carbon chains can adapt a wide 
range of conformations; therefore, the peaks 
for C2 and C1 cannot be distinguished u 

because of conformational heterogeneity. 
At higher population densities, all of the 
carbon chains are near one another and 
have a more upright orientation with re- 
spect to the silica surface. The molecules 
have a higher degree of ordering that nar- 
rows the linewidths in the 13C spectrum 
and allows better resolution of the peaks for 
all three carbons. 

The close-packed conformation of the 
carbon chains is also evident in 29Si NMR 
results (Fig. 4). Relative peak intensities in 
29Si cross-polarization magic angle spinning 
(CP-MAS) are not strictly quantifiable be- 
cause of differences in relaxation behavior. 
Therefore, we used the Bloch-decay pulse 
sequence (single-pulse excitation) with 
long recycle times to obtain data that al- 
lowed us to quantify the molecular compo- 
sition of these materials. The large peak at 
-1 1 1 pprn is from the silica support. In Fig. 
4A, three additional peaks from -50 to -80 
pprn are identified for 25% coverage, corre- 
sponding to three different environments 
for the siloxane groups in the functionalized 
monolayers (1 3): (i) isolated groups that are 
not bound to any neighboring siloxanes, (ii) 
terminal groups that are only bound to one 
neighboring siloxane, and (iii) cross-linked 
groups that are bound to two neighboring 
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Fig. 3. 13C NMR spectra of organic rnonolayers 
on mesoporous silica with the peak assignments. 
(A) At 25% coverage, C1 and C2 cannot be sep- 
arated because of conformational heterogeneity. 
(B) At 76% coverage, C1 and C2 are clearly re- 
solved, suggesting a more homogeneous envi- 
ronment. When the functionalized groups bind to 
mercury, all the peaks become broadened, and 
the original C1 peak almost disappears. (C) A new 
peak is observed at 37 ppm for C1 because of the 
mercury thioalkoxide. 

siloxanes. Among the three, the most dom- 
inant peak comes from the terminal group. 
For 76% coverage (Fig. 4B), the molecules 
are closer to one another, and the most 
predominant peak corresponds to the cross- 
linked siloxane group; the isolated siloxane 
nrouD is absent. The transition from disor- 
u .  

dered conformation at low surface coverage 
to close-packed conformation at high cov- 
erage is illustrated in Fig. 5. 

The 13C spectrum for 76% coverage 
with mercury (Fig. 3C) shows that the three 
resonances corresponding to the C1, C2, 
and C3 methylene carbons observed in Fig. 
3B are still discernible but become much 
broader. A new broad peak appears at 37 
ppm, and the peak at 24.7 pprn markedly 
decreases in height. This result suggests 
strong chemical bonding between the mer- 
cury and thiol group, which causes the shift 
of the peak corresponding to C1 attached to 
the thiol group. The next C2 group is also 
affected, but to a lesser degree. The contin- 
ued presence of the peak at 24.7 pprn indi- 
cates that the thiol groups are not yet sat- 
urated with mercury. 

The chemical bonding between mercu- - 
ry and the thiol group was further con- 
firmed by extended x-ray absorption fine 
structure (EXAFS) studies. A schematic of 
the proposed structure is shown in Fig. 5C 
(14). When the mercury binds to the thiol 
group, the Hg-S 2nd Hg-0 bond lengths 
are 2.4 + 0.01 A and 2.14 + 0.01 A, 
respectively. The mercury atoms on the 
two adjacent thiol groups are linked by the 
same oxygen atom, yi th  a Hg-Hg separa- 
tion of 3.99 2 0.05 A, and the bond angle 
of Hg-0-Hg is calculated to be 137". 

The abilitv of FMMS materials to re- 
move mercury and other heavy metals from 

Cross-linked 

Terminal / 

Fig. 4. 29Si NMR spectra of FMMS with 25% and 
76% coverage. The peak at -1 1 1  ppm is from the 
silica support. (A) At 25% coverage, three addi- 
tional peaks from -50 to -100 ppm are observed, 
corresponding to isolated, terminal, and cross- 
linked conformations. Among the three, the larg- 
est peak is from the terminal silanol group. (B) At 
76% coverage, the peak from the isolated silanol 
group disappears and the largest peak is from the 
cross-linked siloxane group. 

924 SCIENCE VOL. 276 9 MAY 1997 www.sciencemag.org 



contaminated solutions was tested under a 
wide range of conditions. Mercury and 
heavy metal contamination is a serious 
problem at waste-contaminated sites (15). 
Industrial and civilian sources deposit up to 
10,000 tons of mercury into the environ- 
ment every year ( 1  6) .  Table 1 shows the ion 
concentrations of several simulated con- 

FMMS and the structure of the organic 
 non no layers are stable up to 125°C. The  
hydrolytic stability was demonstrated by 
heating the mercury-loaded FMMS in water 
at 70°C for 24 hours. Only a very small 
a~nount  of mercury was released during this 
process. T o  regenerate the used FMMS ma- 
terials, we washed mercury-loaded FMMS 
with a concentrated HCl (12.1 M )  solution. 
This resulted in 100% removal of the load- 

forming deadly methyl mercury (1 6) .  
Beyond its immediate applications in 

environmental cleanup, FMMS provides a 
unique opportunity to introduce molecular 
binding sites and to rationally design the 
surface properties (for example, wettability 
and charge density distribution) of meso- 
worous materials. In addition, fi~nctional- 

taminated solutions before and after treat- 
ment with FMMS with 10% and 25% sur- 

ized  non no layers have been widely investi- 
gated in materials synthesis ( 1  9-21 ). Spe- 
cific groups in the fi~nctionalized monolay- 
ers can be used to attach new functional 

face coverage. The  solutions si~nulated Sa- 
vannah River Site ISRS) radioactive wastes 

ed mercury. The regenerated materials re- 
tained a loading capacity of 210 mg of Hg 
per gram of FMMS. The FMMS materials 
remained effective e17en after several regen- 

~, 

in holding tank L or nonradioactive vacu- 
um pump oil waste from the SRS tritium 
facilities ( 1  7). A single treatment with 
FMMS reduced the mercurv concentration 

groups (20) or to stimulate mineral deposi- 
tion (21 ). We believe the combination of , , 

ordered mesoporous structures and f~lnc- 
tionalized monolayers can play a pivotal 
role in the development of a new genera- 
tion of hierarchical structures and function- 

eration and reuse cycles. 
Comoared with conventional remedia- 

to well below U.S. ~ n v i r o h n e n t a l  Protec- 
tion Agency elemental limits for hazardous 
wastes and even drinking water standards. 
The  silver concentrations also were reduced 

tion technologies for heavy metals (1 8),  the 
FMMS materials have ( i )  high inetal load- 
ing capacity because of the densely popu- 
lated thiol groups on  the large surface area 
mesoporous oxides, and (ii) high selectivity 
of heavy metals against background electro- 
lytes. FMMS should bind metallic, inorgan- 
ic, organic, charged, and neutral mercury 
compounds and can be used in a variety of 
media such as water, oil, and gas. The mer- 
cury-loaded FMMS should also have good 
long-term durability as a permanent waste 
form. The small pore size (<20  nm) should 
orevent bacteria (at least 2000 nm in size) 

alized composites. 

belolv the detection limit. 
Similar results were obtained for lead 
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Table 1. Analyzed concentrations of toxic metal contaminants regulated under the Resource Conser- 
vation and Recovery Act in waste solutions before and after FMMS treatment. 

Concentration (ppm) 
Solution K, 

Hg Ag Cr Pb Ba Zn Na 
of Hg 

No treatment 
1.80 1.79 7.22 7.18 
0.45 1 .I3 5.25 7.12 
1.04 0.58 2.90 7.15 

After treatment, 10% FMMS 
10.005 1.45 1.66 7.60 
<0.005 0.70 0 7.35 
10.005 0.71 . 0 7.40 

After treatment, 25% FMMS 
<0.005 1.67 2.26 8.64 
<0.005 0.07 0 8.21 

WW, pH 9 0.0007 10.005 0 0 8.82 1 .I9 2201 340,141 
Oil 0.06 3.467 
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lated materials (5). 
Oxides of transition metals have some 

advantages over aluminosilicate materials 
for use in electromagnetics, photoelectron-
ics, and catalysis because transition metal 
atoms can exist in various oxidation states. 
However, syntheses and structures of tran­
sition metal oxides can be.much more com­
plicated than oxides of main group metals 
because of the multitude of different coordi­
nation numbers and oxidation states. Meso­
porous structures of transition metals doped 
into aluminosilicates [Cr (6)] or transition 
metal oxides such as Ti (7), V (8), W (3, 5), 
Zn (9), Nb (10), and Ta (11) have been 
reported. Most of these transition metal ox­
ide mesoporous materials are insulators with 
transition metals in isolated oxidation states. 

Manganese Oxide Mesoporous Structures: 
Mixed-Valent Semiconducting Catalysts 

Zheng-Rong Tian, Wei Tong, Jin-Yun Wang, Nian-Gao Duan, 
Venkatesan V. Krishnan, Steven L. Suib* 

Hexagonal and cubic phases of manganese oxide mesoporous structures (MOMS) have 
been prepared by means of the oxidation of Mn(0H)2. The hexagonal MOMS materials 
form a hexagonal array of pores with an open porous structure, thick walls (1.7 nano­
meters), and exceptional thermal stability (1000°C). The walls of the mesopores are 
composed of microcrystallites of dense phases of Mn203 and Mn304, with Mn06 oc-
tahedra as the primary building blocks. The calcined hexagonal MOMS have an electrical 
conductivity of 8.13 x 10~6 per ohm-centimeter, an average manganese oxidation state 
of 3.55, and a band gap of 2.46 electron volts. Catalytic oxidations of cyclohexane and 
n-hexane in aqueous solutions in a batch reactor show conversions of —10 and ~8 
percent, respectively. Characterization and catalytic data suggest that MOMS systems 
show significant enhancement in thermal stability with respect to octahedral molecular 
sieve materials. 
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