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Integration of What and Where in the Primate
Prefrontal Cortex

S. Chenchal Rao, Gregor Rainer, Earl K. Miller*

The visual system separates processing of an object’s form and color (“what”) from its
spatial location (“where”). In order to direct action to objects, the identity and location
of those objects must somehow be integrated. To examine whether this process occurs
within the prefrontal (PF) cortex, the activity of 195 PF neurons was recorded during a
task that engaged both what and where working memory. Some neurons showed either
object-tuned (what) or location-tuned (where) delay activity. However, over half (52
percent, or 64/123) of the PF neurons with delay activity showed both what and where
tuning. These neurons may contribute to the linking of object information with the spatial

information needed to guide behavior.

A natomical segregation of processing is an
important principle of neural organization.
Even within a modality, largely separate
pathways process different attributes of the
same stimulus. Perhaps the best explored
example of segregation is in the visual sys-
tem, where the analysis of visual scenes is
carried out by at least two pathways. A
“ventral pathway” through inferior tempo-
ral (IT) cortex processes information about
features that identify objects, such as shape
and color (object, or “what” information),
and a “dorsal pathway” through posterior
parietal (PP) cortex processes information
about location and spatial relations among
objects (spatial, or “where” information)
(1). This example raises the question of
where and how information about object
identity is integrated with information
about object location. One region that may
play a role in integration is the prefrontal
(PF) cortex, which receives inputs from
virtually all of the brain’s sensory systems
(2) and has long been thought to be an area
where diverse signals are integrated to serve
higher order cognitive functions.

A major contribution of the PF cortex to
cognition is the active maintenance of be-
haviorally relevant information “online,” a
process known as working memory (3).
Working memory is typically studied in
tasks in which an animal must remember a
cue stimulus over a delay period and then
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make a behavioral response based on the
cue. Physiological studies in monkeys have
revealed that many PF neurons are highly
active during the delay of such tasks (4).
The activity is often cue-specific, suggesting
that this “delay activity” is the neural cor-
relate of the working memory trace. Given
its central role in cognition, PF neurons
that contribute to working memory are ob-
vious candidates for integrating diverse sig-
nals. However, the extent to which differ-
ent types of information, such as what and
where, are integrated within the PF cortex
is not well understood. Highly processed
spatial information from the PP cortex and
object information from the IT cortex are
received by separate regions of the PF cor-
tex, the dorsolateral (areas 46 and 9) and
the ventrolateral (area 12) PF cortex, re-
spectively (5), but there are interconnec-
tions between these regions that could
bring what and where together (2, 6).
Physiological studies have found that
different neurons and even different regions
of the PF cortex convey either object infor-
mation (in the ventrolateral PF cortex) or
spatial information (in the dorsolateral PF
cortex), but no neurons have been reported
to convey both (7). In previous studies,
however, working memory for what and
where was examined in two separate tasks:
an object task and a spatial task. This sep-
aration rarely occurs in the real world and it
raises the possibility that the apparent seg-
regation of what and where working mem-
ory reflected an artificial behavioral segre-
gation. Thus, to investigate whether object
and spatial information is integrated by in-
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Fig. 1. A typical behavioral
trial. The correct behavioral
response, a saccadic eye

Fixation

movement to the remem-
bered location of the match-
ing object, is indicated by
the arrow. The order of pre-
sentation is from the upper
left to the lower right.

dividual PF neurons, we employed a task in
which what and where are used together.

On each trial (Fig. 1), while the monkey
maintained fixation of a fixation spot, a
sample object was briefly presented at the
center of gaze. After a delay, two test ob-
jects were briefly presented at two of four
possible extrafoveal locations. One of the
test objects matched the sample, the other
was a nonmatch. After another delay, the
monkey had to make a saccade to the re-
membered location of the match. Thus, this
task required -that the monkey, within a
. trial, link what with where. It had to re-
member the object’s identity over the first
delay (the what delay), use that information
to find the match, and then remember its
location over the second delay (the where
delay) (8).

We recorded the activity of 195 neurons
from the lateral PF cortex of two monkeys
(9). Many of the neurons were activated
during the delay intervals. To discern
whether the level of delay activity was re-
lated to the information retained in mem-
ory, we performed analyses of variance
(ANOVAs) on each neuron separately
(10). The sample object was the factor for a
one-way ANOVA on activity from the
what delay (OBJECT factor). The cued lo-
cation (LOCATION factor) and object
used to cue it (OBJECT factor) were used
for a two-way ANOVA applied to the
where delay activity. On the basis of the
ANOVAs (evaluated at P < 0.01), 64% of
the neurons (123/195) showed delay activ-
ity that varied depending on either the
object or location, or both.

Some PF neurons (8/123, or 7%) showed
delay activity that was significantly tuned
to the sample object only. During the what
delay while the monkey viewed a blank
screen and held the sample object in work-
ing memory, these neurons were highly ac-
tive, with different sample objects evoking
different levels of activity (OBJECT factor,
P < 0.01). By contrast, during the where
delay while the monkey had to hold loca-
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tion information in working memory, none
of these cells were selective for the cued
location (LOCATION factor, P > 0.01) or
for the sample object (OBJECT factor, P >
0.01). For example, the neuron shown in
Fig. 2A showed significant sample object—
tuned activity during the what delay. Dur-
ing the where delay when the task demands
shifted to retaining location information,
the neuron’s activity decreased relative to
its level of activity during the what delay.
We termed these neurons “what” cells.
They appear to be specialized for object
working memory.

Other neurons (51/123, or 41%) were
not selective for the sample object during
the what delay (OBJECT factor, P > 0.01)
but showed significant tuning for locations
during the where delay (LOCATION fac-
tor, P < 0.01). For nearly all of these neu-
rons (48/51, or 94%), object information
had no effect on the where delay activity
(OBJECT factor, P > 0.01, LOCATION X
OBJECT interaction, P > 0.01). For exam-
ple, the neuron shown in Fig. 2B exhibited
relatively little activity until a location was
cued by the matching object. Then, during
the where delay, this neuron was highly
active, with different locations eliciting sig-
nificantly different levels of activity. We
termed these neurons “where” cells because
they appear to be specialized for spatial
working memory (I1).

Over half of the PF neurons with delay
activity (64/123, or 52%) were not special-
ized but rather appeared to contribute to
both object and spatial working memory.
Their what delay activity varied significant-
ly with the object used as the sample (OB-
JECT factor, P < 0.01), and their where
delay activity varied significantly with
which location was cued (LOCATION fac-
tor, P < 0.01) (Fig. 3A). They were highly
selective for both objects and locations. On
average, there was a 64% increase in what
delay activity after a good (preferred) sam-
ple object over the activity after a poor
(nonpreferred) sample object and a 71%
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Fig. 2. Responses of single PF neurons showing
either object-tuned (A) or location-tuned (B) delay
activity. The small horizontal line on the left of each
histogram indicates the time of the sample object
presentation, and the line in the middle indicates
presentation of the test objects. “Good object”
and “poor object” refer to the objects used as
samples. “Good location” and “poor location” re-
fer to the locations cued by the matching object.
“Good” or “poor” refer to the object or location
that elicited the most or least activity, respectively.
Bin width, 20 ms.

increase in where delay activity after cueing
of a good location over the activity after a
poor location. Thus, these “what-and-
where” cells conveyed object and spatial
information during different epochs of the
same behavioral trial and appeared to con-
tribute to both object and spatial working
memory. What cells, where cells, and what-
and-where cells were distributed equally be-
tween the dorsolateral PF cortex and the
ventrolateral PF cortex (12).

Because we cued each location with an
object, location-tuned activity could have
conveyed either location information alone
or information about both the location and
the matching object that cued it. We found
examples of both. The two-way ANOVA
revealed that a little over half of the what-
and-where cells (36/64, or 57%) showed
location tuning in the where delay that was
unaffected by the match object (LOCA-
TION factor, P < 0.01, OBJECT factor,
P > 0.01; LOCATION X OBJECT inter-
action, P > 0.01); that is, the level of
activity for a given location was the same
regardless of which object cued it. We also
conducted, for each neuron, a discriminant
analysis on the activity from the where
delay to measure the amount of information
carried about the cued location and the
matching object. The discriminant analysis
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Fig. 3. (A) Response of a single
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activity than cueing a good location with a poor object. However, a poor location elicited less activity than a good location, regardless of which object cued

it. See Fig. 2 for conventions.

attempted to classify, on the basis of a neu-
ron’s firing rate on each trial, which one of
the four locations was cued or which one of
the four objects was the match (13). Be-
cause four objects and four locations were
used, chance performance for each classifi-
cation was 25%. For these neurons, the
mean successful classification rate for loca-
tions on the basis of where delay activity
was 33.3%, which was significantly greater
than chance (¢ test, P < 0.001) (14). By
contrast, the mean classification rate for
objects on the basis of where delay activity,
25.6%, was not significantly different from
chance (P = 0.206). Thus, after having
conveyed object information in the what
delay, these neurons “switched modes” and
conveyed only location information in the
where delay. This transformation mirrors
the demands of the behavioral task.

For the remaining what-and-where cells
(28/64, or 44%), both object and location
information significantly affected the where
delay activity (LOCATION factor, P <
0.01; OBJECT factor, P < 0.01, or LOCA-
TION X OBJECT interaction, P < 0.01).
The predominantly location-tuned activity
was further modulated by the object that
cued the location. For a given location, the
where delay activity was higher if a good
object cued it than if a poor object cued it
(Fig. 3B). For these neurons, the mean clas-
sification rate for locations on the basis of
where delay activity was 34.2%, whereas
the classification rate for objects, 28.3%,
was smaller, but significantly above chance
(both different from chance, P < 0.001)
(15). Thus, the where delay activity of
these neurons reflected both the cued loca-
tion and the object that appeared in it, that
is, integrated what and where information.

Recent studies have emphasized a segrega-
tion of object and spatial information process-
ing in both the visual cortex and the prefron-
tal cortex. The results of the present study
indicate that when object and location infor-
mation are used together (as is typically the
case in the real world), information about
these attributes converges in the PF cortex.
Indeed, the results support the notion that a

function of the PF cortex is to integrate dis-
parate information (16). What and where
signals could be integrated through intercon-
nections between dorsolateral and ventrolat-
eral PF cortices (2, 6), through converging
projections from the parietal and temporal
cortex on the frontal cortex (17), through
cross-talk in the visual cortex (18), or through
a combination of these pathways. In any case,
single PF neurons that process both what and
where signals may contribute to the linking
together of object information with the spatial
information needed to direct action. They
may also help synthesize a unified representa-
tion of objects in their places. Indeed, the
activity of many neurons simultaneously re-
flected a location and the object that ap-
peared in it. They may play a role in integrat-
ing what and where in working memory.

Finally, the fact that the properties of
many of the delay neurons mirrored the re-
quirements of the task (they conveyed first
object, then location, information) suggests
that the PF cortex is “tuned” by behavioral
demands (19). Functional topography of sen-
sory cortical areas changes with experience
(20). It may be that the PF cortex, which
plays a central role in the flexible guidance
of behavior, exhibits extensive functional
plasticity. Thus, the PF cortex may be highly
modifiable, its representations changing to
meet the demands placed on it.
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Delta-Interacting Protein A and the Origin of
Hepatitis Delta Antigen

Robert Brazas and Don Ganem (1) propose
that the cellular protein, delta-interacting
protein A (DIPA), interacts with hepatitis
delta antigen (HDAg), affecting hepatitis
delta virus (HDV) replication. Although
their work provides useful information
about the biology of HDV, the main con-
clusion, that DIPA is the cellular homolog
of HDAg, is not supported by their data.

We have examined the statistical signif-
icance of the match between HDAg and
DIPA protein sequences by Monte Catlo
simulation. In their comparison between
HDAg and DIPA protein sequences, Brazas
and Ganem reported an identity of 24%
and a similarity of 56%, using the GES
scale, which considers hydrophobicity when
determining the distance matrix for substi-
tutions (2). We compared HDAg with
10,000 randomized DIPA sequences, using
the GAP program with the same parameters
as Brazas and Ganem (1) (a gap weight of
3.0 and gap length weight of 0.1). The
probability distributions for identity match
and for similarity values that are deter-
mined using the GES scale (1) show that
the match between HDAg and DIPA is not
significant (Fig. 1A): The probability for an
identity match greater than or equal to 24%
is 13.2% and the probability for a similarity
match greater than or equal to 56% is
14.1%. This does not support the proposed
common ancestral relationship between
HDAg and DIPA.

Furthermore, it is inappropriate to use
the GES scale to determine homologous
relationships between protein sequences,
because convergent evolution could easily
affect the hydrophobicity of a protein se-
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quence, a relatively simple chemical prop-
erty. However, the match between HDAg
and DIPA is also not significant, with the
use of the PAM-250 matrix (data not
shown).

While various matrices may give differ-
ent similarity measurements, the identity
remains the same given a particular align-
ment. However, the identity match is a
result of a biased amino acid composition.
A Monte Carlo simulation comparing
HDAg to 10,000 random sequences that
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Fig. 1. Probability distributions for (A) DIPA se-

quence randomized and (B) randomization based
on average amino acid composition.
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have the average amino acid compositions
of an overall protein with the same length
of the DIPA protein sequence shows that
the observed similarity is again not signifi-
cant (P = 18.2%), but the identity match
would have been significant (Fig. 1B). Thus
the reported “match” is biased by the amino
acid compositions of HDAg and DIPA. [We
used the amino acid composition derived
from the exon database developed from
GenBank release 90, where redundant se-
quences are deleted by a similarity criterion
of 20%. For detailed procedures, see (3)].

The three amino acid compositions are
listed (Table 1). Both HDAg and DIPA
have similarly biased amino acid composi-
tions with overrepresented residues like
Glu, Gly, and Arg and underrepresented
His, Thr, and Tyr. This will lead to elevated
identity matching between the simulated
random sequences and HDAg.

We conducted a test of the effect of
amino acid composition on the identical

Table 1. Amino acid compositions of HDAg,
DIPA, and the exon database.

Residues HDAg DIPA Database
Ala 0.0421 0.0990 0.0683
Cys 0.0047 0.0297 0.0202
Asp 0.0561 0.0446 0.0538
Glu 0.1168 0.1287 0.0648
Phe 0.0280 0.0099 0.0427
Gly 0.1262 0.1238 0.0612
His 0.0047 0.0050 0.0235
lle 0.0327 0.0050 0.0548
Lys 0.1028 0.0198 0.0607
Leu 0.0794 0.1584 0.0886
Met 0.0093 0.0149 0.0245
Asn 0.0280 0.0198 0.0463
Pro 0.0841 0.0495 0.0529
GIn 0.0327 0.0644 0.0418
Arg 0.1262 0.1188 0.0532
Ser 0.0561 0.0495 0.0796
Thr 0.0234 0.0198 0.0574
Val 0.0327 0.0248 0.0633
Trp 0.0140 0.0149 0.0118
Tyr 0.0000 0.0000 0.0306
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