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The neurofibromatosis type 1 (NF1) tumor suppressor protein is thought to restrict cell
proliferation by functioning as a Ras-specific guanosine triphosphatase-activating pro-
tein. However, Drosophila homozygous for null mutations of an NF7 homolog showed
no obvious signs of perturbed Ras1-mediated signaling. Loss of NF7 resulted in a
reduction in size of larvae, pupae, and adults. This size defect was not modified by
manipulating Ras1 signaling but was restored by expression of activated adenosine
3',5’-monophosphate—dependent protein kinase (PKA). Thus, NF1 and PKA appear to
interact in a pathway that controls the overall growth of Drosophila.

The gene responsible for human NF1 en-
codes a large protein that contains a central
domain related to Ras-specific guanosine
triphosphatase—activating  proteins  (Ras-
GAPs) (I). Although loss of NFI expres-
sion correlates with increased Ras activity
in several mammalian tumor cell types (2),
it is not known which pathways are altered
to produce the diverse symptoms observed
in NF1 patients, which in addition to fre-
quent benign and infrequent malignant tu-
mors also include short stature and learning
disabilities (1).

We identified a conserved Drosophila
NF1 homolog (3). Comparison of 13,295
base pairs (bp) of genomic and 9750 bp of
cDNA sequence showed that Drosophila
NF1 consists of 17 constitutive and 2 alter-
natively spliced COOH-terminal exons.
The two ¢cDNAs predict proteins of 2764
and 2802 amino acids that are 60% identi-
cal to the human NFI protein, neurofibro-
min (Fig. 1). Sequence similarity is ob-
served over the entire length of the pro-
teins, including regions outside of the cat-
alytic GAP-related domain (GRD) or the
more extensive segment related to yeast
inhibitor of RAS activity (IRA) proteins
(4). No related sequences were identified
during screens of several cDNA and genom-
ic libraries, indicating that the identified
gene may be the only Drosophila NFI ho-
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molog. RNA in situ hybridization and stain-
ing of embryos and imaginal discs with
monoclonal antibodies to the Drosophila
protein (5) indicated that NFI is widely
expressed in low amounts during all devel-
opmental stages (6). The Drosophila NF1
gene was mapped to cytogenetic interval
96F and subsequently localized to a 30-kb
DNA segment between the bride of sevenless
gene and the Enhancer of split [E(spl)] com-
plex (7).

To isolate mutant alleles at the NFI
locus, we mobilized a P-element transposon
located within the E(spl) complex, about 15
kb downstream of NFI (7). Among 1600
lines screened by inverse polymerase chain
reaction (8), two showed evidence of de
novo transposon insertions within the NF1I
gene. One mutant allele, NFI”!, has a de-
letion that removed all of the NFI gene
except for the first exon (Fig. 1). The dele-
tion extends from the first NFI intron to
the site of the original P-element insertion
and removes DNA encoding at least two
E(spl) transcripts. The other allele, NFI172,
contains a P-element in the first NFI in-
tron (Fig. 1). Neither allele expresses NF1
protein (Fig. 2A).

Unlike Nfl-deficient mice (9), Drosoph-
ila NFI mutants are viable and fertile. Al-
though heterozygotes (NF1/+) had no ob-
vious defects, homozygotes (NFI/NFI) of
either allele were 20 to 25% smaller than
tlies of the parental K33 strain during all
postembryonic stages. This growth defect
was apparent under various culture condi-
tions, and mutant animals did not display
delayed eclosion or bristle phenotypes that
are observed with several Minute mutations
(10). The growth defect was fully rescued by
expression of a heat shock—inducible hsNF I
(11) transgene (Fig. 2, A and B, and Table
1).

To determine whether reduced cell pro-
liferation or impaired cell growth underlies

the smaller size of NFI mutants, we com-
pared the wings of wild-type and mutant
animals. The linear dimensions of mutant
wings were 20 to 25% smaller than those of
wild-type flies (Fig. 2, C and D). Because
cach wing epidermal cell secretes a single
hair, cell densities can be determined by
counting the number of hairs in a defined
region (12). Both homozygous mutants had
a 30 to 35% higher cell density than flies of
the parental line (Fig. 2E). To determine
whether the reduced size of wing epidermal
cells reflects a cell-autonomous defect, we
used x-irradiation to induce mitotic recom-
bination in the wing cells of heterozygous
NFI mutants (13). No difference in cell
density was observed between multiple
NF17/= clones and surrounding tissue (6).
The reduced size of the wing cells therefore
reflects a nonautonomous requirement for
NF1, perhaps reflecting a hormonal defi-
ciency or impaired nutrition or metabolism.
The eyes of NFI mutants showed a reduced
number of ommatidia of normal size and
structure (Fig. 3). Furthermore, NFI-defi-
cient embryos were of normal size (Fig. 3).
Thus, loss of NFI affects the growth of
various tissues in different ways.

The only known biochemical property
of neurofibromin is that it negatively regu-
lates Ras (2), but Drosophila NFI mutants
did not exhibit phenotypic abnormalities
associated with excess Rasl or Ras2 activi-

Table 1. Rescue of the pupal size defect of NF71
mutants by hsNF1 and activated PKA, but not by
activated Raf or by reduced Ras? gene dosage.
The size of pupae is given as the average plus or
minus the standard deviation. With the Mann-
Whitney rank-sum test (30), the following popula-
tions had statistically significant differences in me-
dian pupal lengths (P < 0.0001): K33 and NF7177,
K83 and NF172, NF1P7 and hsp70-PKA*; NF177
and NF172 and hsp70-PKA*; NF172, The size dif-
ferences between Ras7¢’®;, +/+ and Ras?°'5;
NF172, and between hsp70-PKA*; +/+ and
hsp70PKA*; NF1P7 or hsp70-PKA*; NF172 pupae
were significant at the same confidence level. Rel.
size, relative size.

Genotype Pupal length  Rel.

(mm) size
KB3/K33 (+/+) 88 2.92+0.19 1.00
NF1P1/NF1P7 53 2.43+0.09 0.83
NF1P2/NF1P2 54 232015 0.79
hsNF1; +/+ 79 2.98 +0.15 1.02
hsNF1; NF1PT/NF1P" 56  3.00 = 0.14 1.03
hsNF1; NF172/NF172 88 3.01 = 0.14 1.03
Ras1°'8, +/+ 64 2.83+0.14 0.97
Ras1¢78; NF172/NF172 90 2.39 = 0.15 0.82
hsp70-PKA*; +/+ 88 3.02*=0.16 1.03
hsp70-PKA*; 79 274 +0.17 0.94
NF1PT/NF1P1
hsp70-PKA*; 64 271 =015 093
NF1P2/NF 172
Raf9ef, NF1PT/NF177 67 239 *0.17 0.82
Raf9e’; NF1P2/NF172 48 2.33 £ 0.14 0.80
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Fig. 1. Drosophila NF1 gene structure and com-
parison of the encoded protein to human neuro-
fibromin. (A) Intron-exon structure and location
of translational start (AUG) and in-frame stop (*)
codons. The arrow indicates the location of a
P-element in NF172, The extent of the deletion in
NF1P7is indicated by the line below the diagram.
(B) Percentage amino acid sequence identity be-
tween the indicated segments of Drosophila and
human NF1. The GRD- and IRA-related seg-
ments are drawn as black and shaded boxes,
respectively. (C) Alignment of Drosophila (top)
and human NF1 proteins. Dashes were intro-
duced to optimize the alignment. Downward
pointing arrows indicate amino acids encoded
by the last complete codon in each exon. The
boxed segment shows the approximate extent
of the GRD. Three positions where alternate
splicing inserts short segments in human neuro-
fibromin (28) are identified by upward pointing
arrows. One of these locations corresponds ex-
actly to the position where Drosophila exon 17 is
joined to either exon 18a or 18b. Exon 18b in-
cludes a translational terminator after a single
codon, and cDNAs harboring this exon predict a
protein ending in PTDKAA. Eleven out of 17 Dro-
sophila splice sites map within two codons of
splice sites in the human NF17 gene (29). Abbre-
viations for the amino acid residues are as fol-
lows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G,
Gly; H, His; |, lle; K, Lys; L, Leu; M, Met; N, Asn;
P, Pro; Q, GiIn; R, Arg; S, Ser; T, Thr; V, Val; W,
Trp; and Y, Tyr.

ty. Whereas expression of activated Rasl or
Ras2 transgenes results in widespread devel-
opmental defects (14), NFI mutants are
smaller but otherwise patterned normally.
We therefore examined the regulation of
Ras by NF1 both in vitro and in vivo. We
assayed GAP activity of bacterial fusion
proteins containing the catalytic domains
of human pl20GAP, or human or Dro-
sophila NF1 (15). All three fusion proteins
stimulated the guanosine triphosphatase
(GTPase) activity of human H-Ras, but not
of the constitutively active H-RasV2'2 mu-
tant (Fig. 3A).

We also examined Rasl function in
vivo. The Drosophila Rasl protein func-
tions in signaling pathways downstream of

Fig. 3. Function of Dro-

sophila NF1 as a Ras- A
GAP in vitro, but not as a

major regulator of Torso- . 100
or Sevenless-mediated & 80
signaling in vivo. (A) Ra- £
dioactivity remaining on £ &0
H-Ras-[y32P]guanosine E 40
triphosphate (GTP) or = 20
H-RasVa'12—[y32P|GTP af- 5

o

ter 10-min incubations 3
with the indicated fusion

Fig. 2. Size defect of NF1
mutants: Rescue by expres-
sion of an hsNF1 transgene
and evidence of reduced cell
size. (A) Immunoblots of em-
bryo extracts probed with
monoclonal antibody to NF1
(antibody DNF-21). The ar-
row indicates a 280-kD im-
munoreactive protein that is
present in the K33 parental
strain but absent in both
NF1P" and NF172. A trans-
genic strain harboring a sec-
ond chromosome hsNF1
transgene had an increased
amount of 280-kD immuno-
reactive protein even before
heat shock (HS) induction.
(B) Third instar larvae (top)
and pupae (bottom) of the
indicated genotypes. (C and
D) Wings from K33 and
NF1P7 flies, respectively. (E)
Quantitation of the number
of wing epidermal cells per
square millimeter in the indi-
cated strains.

v >
' 4 K33 (parent)
NF1P1

NF1

several receptor tyrosine kinases (RTKs),
including Torso and Sevenless. Because
minor perturbations in Ras1 function have
phenotypic consequences in each of these
pathways, we examined whether loss of
NF1 perturbed Torso-controlled specifica-
tion of embryonic terminal structures or
Sevenless-mediated photoreceptor differ-
entiation. The pattern of tailless expres-
sion, which is regulated by Torso (16), was
normal in NFI-deficient embryos (Fig. 3,
B and C).

To test for abnormalities in Sevenless
signaling (17), we examined the retinas of
mutant animals. Although reduced in
number, the ommatidia of NF12 homozy-
gote, of NFIFP?/NFIP!, and of NFIF?¥/
Df(3R)boss" flies (18) had the normal com-
plement of photoreceptor and accessory cells
(Fig. 3D). In homozygotes of NFI1F!, 25% of

ommatidia had one or more extra photore-

23
L
Z
=]

e

4

proteins (h-NF1 is the hu-
man NF1 GRD; d-NF1

is the Drosophila GRD; WT, wild type). (B and C) RNA in situ hybridization,
showing tailless expression. The embryos in (B) and (C) are K33 and NF172
homozygotes, respectively. (D) Retinal section of adult NF772 homozygotes,
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WT Ras

RasVali2

NF1P2

Control, 30 min HS
hsNF1, 30 min HS
K33 (parent)
NF1P1/NF1P2

: hsNF1; NF1P1

| NF1P1

hsNF1, no HS
B NF1P2

hsNF1; K33
" hsNF1; NF1P2

103 cells/mm?

ceptor cells (6). However, this phenotype
may result from the deletion of genes within
the neurogenic E(spl) complex. A particular-
ly sensitive indicator of Sevenless pathway
function is the sevf*; So¥/“?/+ mutant com-
bination (19). Flies of this genotype that
were also heterozygous for NF1P? had no
alteration in the fraction of ommatidia that
had R7 cells. Thus, at least two Rasl-medi-
ated signaling pathways downstream of
RTKs are not influenced by a reduction in
NF1 function.

Heterozygous loss of Rasl or Sos (20) had
no effect on the size of NFI mutant pupae,
nor did expression of an activated Raff
mutation (Table 1). Thus, neither reducing
nor increasing signaling through the Rasl-
Raf pathway modifies the NFI1 phenotype.
Heterozygous loss of another Drosophila
Ras-GAP homolog, Gapl (21), did not en-
hance the phenotype of NFI mutants.

showing ommatidia of normal size and structure. Mutant eyes have only about
550 ommatidia, compared with ~750 in K33 flies. The scale bar represents 10
wm.
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However, homozygous loss of both Gapl
and NFI resulted in lethality during larval
development (6). Thus, similar to what has
been found for murine pl20GAP and NF1
(22), Drosophila Gapl and NF1 may have
partially redundant roles as Ras regulators.

Flies carrying a viable heteroallelic com-
bination of mutant alleles of the gene en-
coding the PKA catalytic subunit, DCO, are
reduced in size (23). To test whether the
adenosine 3',5'-monophosphate (cAMP)-
PKA pathway might represent a target for
NF1, we examined pupae of another het-
eroallelic combination, DCOTV?/DCO03,
and found them to be phenotypically simi-
lar to NFI mutants (6). We then tested
whether increasing PKA activity in NFI
mutant animals would rescue the size de-
fect. A constitutively active murine PKA*
transgene was expressed in an NF] mutant
background (20). Heat shock—-induced ex-
pression of this transgene resulted in lethal-
ity. However, we were able to achieve lower
transgene expression by growing the cul-
tures at 28°C. Under these conditions, sta-
tistically significant rescue of the pupal size
defect was observed (Table 1). In contrast
to its effect on NFI mutant pupae, the
PKA* transgene did not modify the pheno-
type of Tubby, a mutation that results in
pupae of small size (24). Because expression
of activated PKA suppressed the phenotype
of null alleles of NFI, PKA appears not to
function upstream of NFI in a simple linear
pathway. Therefore, PKA must either func-
tion downstream of NFI or in a parallel
pathway.

NFI mutants also differ from wild-type
flies in an assay that determines the num-
ber of flies that fly away upon release from
their containers, either spontaneously or
after repeated prodding (25). About 15%
of either NFI mutant (n = 200) failed to
respond, whereas only 3% of parental K33
flies did not respond. The reduced escape
rate does not reflect obvious anatomical
defects of the peripheral nervous system or
the musculature, and the mutants scored
within normal limits in tests measuring
their response to visual or olfactory stimuli
(26). Electrophysiological studies showed
that the mutants have a defect at the
larval neuromuscular junction that is res-
cued by pharmacological manipulation of
the cAMP-PKA pathway and that is in-
sensitive to manipulation of Rasl-mediat-
ed signaling (27). Thus at least two NFI-
deficient phenotypes can be rescued by
increasing cAMP-PKA signaling. Further
analysis of NFI-deficient flies may define
how the NF1 protein mediates cross talk
between the Ras and PKA pathways and
may ultimately suggest new therapeutic
strategies for the treatment of human neu-
rofibromatosis type 1.
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