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Patterned Delivery of immunoglobulins to
Surfaces Using Microfluidic Networks

Emmanuel Delamarche, André Bernard, Heinz Schmid,
Bruno Michel, Hans Biebuyck*®

Microfluidic networks (uWFNs) were used to pattern biomolecules with high resolution on
a variety of substrates (gold, glass, or polystyrene). Elastomeric n.FNs localized chemical
reactions between the biomolecules and the surface, requiring only microliters of reagent
to cover square millimeter-sized areas. The networks were designed to ensure stability
and filling of the wFN and allowed a homogeneous distribution and robust attachment
of material to the substrate along the conduits in the wFN. Immunoglobulins patterned
on substrates by means of wFNs remained strictly confined to areas enclosed by the
network with submicron resolution and were viable for subsequent use in assays. The
approach is simple and general enough to suggest a practical way to incorporate
biological material on technological substrates.

The immobilization of ligands on surfaces
is a first step in many bioassays, a prerequi-
site in the design of bioelectronic devices,
and a valuable component of certain com-
binatorial screening strategies. Existing ap-
proaches typically expose macroscopic areas
of a substrate to milliliter quantities of so-
lution to attach one type of molecule, some-
times using light and specialized chemistries
to carry out localized reactions (1-7). We
have explored an alternative approach,
namely the use of wFNs to guide nanoliter
quantities of reagent to targeted areas on a
substrate with submicron control.

We used patterns in an elastomeric sup-
port to define a network of conduits for
fluids (the wEN) along the surface of a
substrate (Fig. 1A) (8, 9). Three walls of
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these conduits corresponded to molded fea-
tures in a poly(dimethylsiloxane) (PDMS)
rubber (10). The fourth wall was the surface
of the substrate after it came in contact
with the PDMS. Brief exposure of the
PDMS to an oxygen plasma before this
contact rendered the surface of the conduits
hydrophilic and thus allowed a positive cap-
illary action on a liquid introduced at the
openings of the conduits (11). A tight seal
precluding flow between adjacent, noncom-
municating capillaries occurred where the
PDMS touched the substrate (12); sponta-
neous adhesion between the elastomer and
surface maintained this seal without requir-
ing additional pressure. We applied the
elastomer to Au, glass, and Si-SiO, surfaces
previously activated by formation of a hy-
droxylsuccinimidyl ester to achieve chemi-
cal coupling with pendant amino groups
common to proteins. These substrates had
enough reactivity so that monolayer quan-
tities of immunoglobulin G (IgG) were
readily fixed to the surface, preventing their
detachment in the ensuing washing steps
(13). We followed the attachment of IgGs
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on the surface by ellipsometry (14) and
waveguide techniques (15) over the large
areas (~1 mm?) probed by these methods to
confirm the extent of reaction and the qual-
ity of attachment.

We designed the network as a system of
two pads, each with lateral dimensions of
3 mm by | mm, connected by 100 chan-
nels, each 3 mm long, 3 wm wide, and
separated by 0.8 wm (Fig. 1B). The chan-
nels were 1.5 pm deep, which provided an
aspect ratio that allowed the formation of
well-defined and stable capillaries in the
PDMS. Deeper capillaries proved prone to
collapse, either spontaneously (because of
gravity) or during one of the processing
steps; substantially shallower capillaries
tended to block, provide poor mass trans-
port of proteins, or deform onto the sur-
face (16). With a wFN of the above di-
mensions, delivery of proteins onto the
substrate could be homogeneous over dis-
tances of a few millimeters while still pro-
viding practical quantities of covalently
attached material for convenient screen-
ing using enzyme-linked immunosorbent
assay (ELISA) methods or ordinary fluo-
rescence microscopy. The independence
of capillaries in a network also allows si-
multaneous attachment of different bio-
molecules in each zone of flow (Fig. 1C).
The topology of the network ensures a
minimal use of solutions needed to deriv-
atize the surface and can concentrate
zones of flow into small fields of view
without compromising their integrity.

Depletion of proteins from a dilute solu-
tion confined in small volumes can result
from the loss of material onto the walls of
the conduits or its incorporation into the
bulk part of the PDMS (17). Flow through
the capillaries into a second, hydrophilic
pad avoided such loss of material available
for the coupling step, where diffusion of the
dilute protein from the filling pad might be
insufficient. Depletion could also be cir-
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cumvented, at least in part, by using con-
centrated solutions of ligands or by passi-
vating the walls of the capillaries with poly-
ethylene glycols (18) or bovine serum albu-
min (BSA) (13). Filling of the capillaries
was fast (the speed of filling was >1 mm s~!
with the geometries and buffers used here)
and homogeneous as long as the wFN re-
mained hydrophilic (19). We allowed the
fluid to remain confined in the wFN and on
the surface of the substrate for times similar
to those needed to carry out the reaction on
macroscopic areas (typically 1 hour). Reac-
tions longer than several hours could be
carried out before removal of the wFN from
the substrate with no evident loss of cou-
pling efficiency or resolution, underscoring
the quality of the seal between adjacent
capillaries on the surface (12). The elasto-
meric .FN was peeled away from the sub-
strate under a flow of buffer to rapidly dilute
and flush away the remaining unattached
material from the substrate; this procedure
avoided a general contamination of the sur-
face. Procedures that flush the capillaries
are also possible, but these proved to be
more cumbersome than practical. Depend-
ing on the subsequent use of the patterned
surface, sites that remained unreacted on
the surface were quenched chemically (with
an aminoglycol) or blocked with BSA.

The spatially controlled deposition of
chicken IgGs was visualized indirectly at
high resolution (Fig. 2A). The contrast in
the scanning electron microscopy (SEM)
image correlates with the amount of protein
present on the surface (20). We measured 5
nm of attached IgGs (~1 monolayer) (14)
by ellipsometry on large exposed areas of
the substrate. The observation of a constant
contrast even for the smallest features in
the image demonstrates that the attach-
ment of IgGs was independent of the geom-
etry of this wFN. The Au substrate used in
Fig. 2A can be replaced by other types of
material such as glass, silicon wafer, or plas-
tics commonly used for ELISA or other
immunoassays because the elastomeric pFN
had sufficient deformability to make the
tight contact necessary to seal it on the
substrate.

Immunoglobulin G’s attached to glass
by means of a pFN remained sufficiently
intact to allow their specific recognition
by an antispecies antibody (Fig. 2B).
Placement of the patterned surface, deriv-
atized as in Fig. 2A, into a solution of the
secondary antibody resulted in specific at-
tachment of these rhodamine-tagged IgGs
only where their binding partner was
present on the surface. This attachment
survived subsequent washing steps that re-
moved more weakly bound material. Flu-
orescence originating from regions defined
by the wWFN was the same over the length
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of the capillary, and its intensity was sim-
ilar to that from larger regions of the
substrate; this observation indicated simi-
lar yields of reaction and recognition in
both environments. This method of detec-
tion was convenient and sensitive. The
high, constant contrast in the image con-
firmed the success of our procedure to
direct the attachment of IgGs reliably and
to prevent their adventitious adsorption
onto unwanted areas.

We also used a pFN to couple two
different IgGs to a glass substrate with
high spatial resolution (Fig. 3). Each IgG
solution flowed from a macroscopic filling
pad into a converging set of channels by
capillary action (as in Fig. 1C). After at-
taching the IgGs, removing the pFN, and
blocking underivatized areas with BSA,
we covered the entire substrate with a
solution containing a cocktail of fluores-
cently tagged IgGs. Its removal from solu-
tion was followed by a thorough rinsing of
the substrate with buffer. We only ob-
served color corresponding to the antici-
pated emission from tagged IgGs specific
for each region; light from other fluores-
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Fig. 1. (A) Patterned elastomer that forms a pFN
by contact with a substrate allows the local deliv-
ery of a solution of biomolecules to the substrate.
(B) Flow of liquid between the filing pad and an
opposite pad fills the array of microchannels that
constitute the strategic part of this device. (C) As-
sembly of different zones of flow on the surface
results from the independence of capillaries, each
requiring only a small volume (~1 pl) of liquid to fill
the zone and derivatize the underlying substrate.
Left panel, top view; right panel, side cut along the
channel.

cently tagged IgGs present in the cocktail,
but without specific binding partners on
the surface, did not appear in our images.
These results illustrate the power of the
EN approach to bringing different pro-

Immobilized IgGs

.. Filling
pad

Fig. 2. The use of a uFN allowed IgGs to be
attached to Au or glass with high spatial definition
while preserving their antigenicity. (A) This SEM
image reveals a pattern of chicken IgGs on gold
[see (13)]. Bright regions in the image have little, if
any, deposition of IgG and correspond to 0.8-pm
gaps where the PDMS uFN contacted the sur-
face and separated adjacent channels. Darker
zones correspond to regions where reaction be-
tween IgGs in the filled wFN and the surface oc-
curred, leaving approximately one monolayer of
attached IgGs, shown schematically within the
dashed box on the image. The fine texture in the
image results from the surface roughness of
the polycrystalline Au film (20 nm thick). (B) A
fluorescence micrograph shows light from
tagged antibodies to chicken IgG that bound
chicken IgGs patterned using a wFN as depicted
in Fig. 1B. After attachment of the chicken IgGs
and removal of the wFN from the substrate, un-
derivatized parts of the sample were blocked with
BSA and the entire sample was exposed to a
solution of antibodies to chicken IgG for 20 minin
accordance with the instructions of the supplier
(Sigma). A flow of PBS buffer (~10 ml) flushed
away the solution, and unbound antibodies to
chicken IgG were further eliminated under a con-
tinuous flow of Tween 20 in PBS (0.5%, ~10 ml)
followed by 10 ml of deionized water. The sample
was dried and the fluorescence was observed
with a Leica DMRXE microscope equipped with
oil-immersion lenses.
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teins into the same region of space with
high definition while preserving their
specificity in a recognition experiment.
We were also able to carry out ELISA-type
assays on the patterned IgGs and watch
the local appearance of a colored substrate
indicative of enzymatic turnover at the
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Fig. 3. Schemes for the delivery and attachment
of two different IgGs using a wFN (A) followed by
an immunoassay for the attached proteins after
removal of the nFN (B). A composite digital im-
age shows light emitted from fluorescently
tagged antispecies IgGs, each specifically rec-
ognizing its binding partner previously patterned
on a glass surface (C). The sample was handled
as in Fig. 2B, except that this immunoassay was
carried out with a heterogeneous solution of
IgGs: tetramethyl rhodamine isothiocyanate—
conjugated antibody to chicken IgG (red), fluo-
rescein isothiocyanate—conjugated antibody to
mouse IgG (green), and R-phycoerythrin—conju-
gated antibody to goat IgG (orange-red), each
diluted 1:300 from their concentrated solutions
(obtained from Sigma). The left stripe comprises
chicken IgGs and the right stripe comprises
mouse IgGs. No light was evident from nonspe-
cific deposition of antibodies to goat IgG any-
where on the surface. There was no green fluo-
rescence on the left channel or red fluorescence
on the right channel; each color channel was
collected independently so that such emission,
resulting from cross-reactivity between the anti-
bodies or their uncontrolled deposition, would
have been easy to detect.
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targeted points of attachment.

Our method for making patterns of bi-
omolecules by attaching them using chem-
ical reactions within wFNs has several
practical benefits. It is simple, inexpen-
sive, and economic of reagents. The pwFN
approach is compatible with many exist-
ing chemistries and substrates already used
to attach macromolecules to surfaces, and
it is compatible with new forms of cova-
lent coupling requiring light activation
because the WEN is transparent well into
the ultraviolet. The deposited material
binds to the surface in solution so that
ligands are not exposed to denaturing con-
ditions. The patterning step is local, that
is, exposure of biomolecules to the surface
occurs only on targeted areas. Simulta-
neous reactions in adjacent flow channels
are possible without the introduction of
cross-interferences, even where different
coupling chemistries are needed. The
method has high spatial definition and is
inherently general, so that many assay for-
mats in current use can be readily minia-
turized without requiring access to stan-
dard lithographic equipment because for-
mation of the wWFN proceeds from its direct
replication of a master. The use of WFNs
requires only environments typical of bio-
logical and chemical laboratories and
needs no extraordinary care or prepara-
tion. Therefore, pFNs may find applica-
tions in many tasks involving the forma-
tion of active biological interfaces.
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