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Maintenance of Acetylcholine Receptor 
Number by Neuregulins at the 

Neuromuscular Junction in Vivo 
Alfred W. Sandrock Jr.,* Stuart E. Dryer,*+ Kenneth M. Rosen, 

Shai N. Gozani, Rainer Kramer, Lars E. Theill, 
Gerald D. Fischbach$ 

ARIA (for acetylcholine receptor-inducing activity), a protein purified on the basis of its 
ability to stimulate acetylcholine receptor (AChR) synthesis in cultured myotubes, is a 
member of the neuregulin family and is present at motor endplates. This suggests an 
important role for neuregulins in mediating the nerve-dependent accumulation of AChRs 
in the postsynaptic membrane. Nerve-muscle synapses have now been analyzed in 
neuregulin-deficient animals. Mice that are heterozygous for the deletion of neuregulin 
isoforms containing an immunoglobulin-like domain are myasthenic. Postsynaptic AChR 
density is significantly reduced, as judged by the decrease in the mean amplitude of 
spontaneous miniature endplate potentials and bungarotoxin binding. On the other hand, 
the mean amplitude of evoked endplate potentials was not decreased, due to an increase 
in the number of quanta released per impulse, a compensation that has been observed 
in other myasthenic states. Thus, the density of AChRs in the postsynaptic membrane 
depends on immunoglobulin-containing neuregulin isoforms throughout the life of the 
animal. 

T h e  fidelity of neuromuscular transmission 
depends o n  the  extraordinarily high density 
of AChRs  in the postsynaptic muscle mem- 
brane Developmental studies h a l ~ e  pointed 
to the  llnoortant troohic Influence of the  
motor nerve in the  regulation of endplate 
A C h R  density ( I ) ,  a n  effect strong enough 
to override the  suppression of A C h R  syn- 
thesis by muscle activity. Part of the  nerve's 
local influence o n  A C h R  density is to pro- 
mote the  ilnlnobilization of AChRs,  a n  ef- 

fect mediated by the  glycoprotein agrin (2) .  
Another  irnportant local influence of the  
motor nerve is to increase the  synthesis and 
insertion of AChRs into the  postsynaptic 
nlenlbrane (3) .  In  fact, endplate nuclei in 
d e ~ ~ e l o p i n g  and lnature muscle are k n o ~ v n  
to transcribe A C h R  subunit genes at a high 
rate as compared with that in nol~synaptic 
lluclei ( 4 ,  5 ) .  T h e  effect of synthesis o n  
local receptor density remains evident 111 

Inice that lack the  vrincioal cvtovlasinic , . 
A. W. Sandrock Jr., Depacmert of Neurobology, Har- 

A C h R  anchoring protein rapsyn (6). 
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(also called Her2, Her3, and Herq),  which 
are closely related to  the  epidermal growth 
factor (EGF) receptor (9 .  1C). Neuregulins 
are potent activators of muscle A C h R  syn- 
thesls, with a median effective dose (ED,,?) 
of 25 to 5C pbl  (1 1 ); neureg~~l in  m R N A  can 
be detected in embryon~c motor neurons 
when motor axons flrst invade peripheral 
lnuscle masses (1 2 ,  13)  and is also abundant 
111 adult motor neurons (13) ;  neuregulill 
receptors are present in skeletal muscle cells 
and may be concentrated at the  neuromus- 
cular junction (14-16); neuregulin protein 
is concentrated in  motor nerve ter~ninals 
(1 5-1 3) and accumulates in  the  extracellu- 
lar matrix of the  synaptic cleft (1 2 ,  15, 18) ;  
and in nlamnlalial~ muscle, lleuregulin in- 
creases mRNA encoding E (17,  19) ,  a n  
A C h R  s u b u n ~ t  that replaces the  y subunit 
during development. Neuregulins may 
therefore mediate the  nerve-dependent 
~naturat ion of junctional AChRs  (2C) as 
\\gel1 as e~ lhance  o-verall A C h R  gene expres- 
sion a t  developing and lnature nerve-mus- 
cle s\-napses. 

More direct evidence of the role of neu- 
regulins at neuroinuscular junctions would 
r e q ~ ~ i r e  the selective inhibition or elimina- 
tion of neuregulin activity, or both. W h e n  
Inice are genetically altered so that exons 
encoding the EGF-like dolnain (21) or the  
im~nunoglobulin (1g)-like dolnain (22) of 
neuregulin or the neuregulin receptors 
ErbB2 (23) and ErbB4 (24) have been de- 
leted, homozygo~~s animals die o n  or about 
embryonic day 1C (ElL?) 1~1th defects of the  
heart, cranial ganglia, and hindbrain. This is 
well before the  fornlation of neuro~nuscular 
synapses begins o n  about E l 5  (25). Het- 
erozygous anilnals appear normal and are 
fertile. This, of course, does not exclude a 
subtle defect a t  the  neuromuscular junctions. 

Although brain-purified ARIA con- 
tained Ig-domain amino acid sequences, Ig- 
containing isoforms may represent a small 
fraction (about 1C to 29%) of the  total that 
are present 111 motor neurons (1 3 .  26) .  O t h -  
er forms, in  which a cysteine-rich region 
replaces the  Ig-like domain (Fig. LA), pre- 
dominate. W e  studied mice deficient in  
Ig-containing neuregulins because these 
isoforlns nlay be particularly important at 
[he neuromuscular junction. T h e  Ig-like do- 
main binds heparin ( 8 ,  27) ,  a n  afflnity that 
nlay be responsible for the  observed associ- 
ation of neuregulin with the  extracellular 
matrix of the  synaptic cleft (12.  15,  18).  
Thus, by acculuulating at the  endplate, Ig- 
containing lleureg~llins may exert a major 
effect o n  endplate A C h R  synthesis. In  fact, 
molecules associated with the  synaptic basal 
lamina have been sl1o\v11 to  promote the  
synthesis of AChRs in denervated adult 
muscle (25),  and they appear to have a 
selective effect o n  the  E-containing (adult) 
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type of AChR (5, 29). 
All neuregulin-deficient mice used in 

this studv were derived from founder ani- 
mals described in the original publication 
on the disruption of the Ig-like domain of 
the neuregulin gene by homologous recom- 
bination (22). Heterozygous (+I-) mice as 
well as wild-type (+/+) littermates were 
genotyped by polymerase chain reaction 
(PCR) analysis of genomic DNA (22). The 
abundance of Ig-containing neuregulin 
transcripts in the spinal cord was quantified 
by S1-nuclease protection assay (30). Pro- 
tected fragments that represent Ig-contain- 
ing neuregulin mRNA were reduced in 
each of seven heterozygotic animals as com- 
pared to five wild-type animals (Fig. 1B). 
The mean reduction was 45%. The concen- 
tration of glyceraldehyde phosphate dehy- 
drogenase (GAPDH) mRNA, which was 
measured simultaneously as a control, was 
identical in the two groups (Fig. 1B). Al- 
though RNA from the entire spinal cord 
was analyzed in this experiment, in situ 
hvbridization studies of svinal cord sections 
have shown that neuregulin mRNA resides 
largely in motor neurons (8, 10, 12, 13, 

.:.I EGF-llkB _.. - 
SI probe 

Sl probe 

Fig. 1. Heterozygote mice are deficient in Ig-con- 
taining neuregulin isoforms. (A) The two major 
splice variants of neuregulin that are NH,-terminal 
to the EGF-like domain. One isoform contains an 
Ig-like domain, and in the other the Ig-like domain 
is replaced by a region that contains eight cysteine 
residues. (B) Nuclease protection of spinal cord 
RNA from seven heterozygote and five wild-type 
(WT) animals with a probe corresponding to the 
Ig-like domain (30). A GAPDH probe was used to 
measure equivalent loading. Msp, an Msp I digest 
of pBR322 DNA; MW, a 100-base pair molecular 
weight ladder (the numbers at left and right indi- 
cate length in nucleotides); neg., protection of 
probes when hybridized to an equivalent weight of 
yeast RNA. (C) Nuclease protection with a probe 
derived from the EGF-like domain. Asimultaneous 
assay for GAPDH was used to establish equiva- 
lence of RNA loading (not shown). 

3 1 ). Therefore, expression of Ig-containing 
neuregulins is reduced in the motor neurons 
of the heterozygote animals. In contrast, 
total neuregulin expression in the spinal 
cord, as measured bv nuclease vrotection 
with a probe from ;he ~ ~ ~ - 1 i k k  domain, 
was not significantly reduced (Fig. 1C). The 
expected small reduction (on the order of 5 
to 10%) would not have been detected in 
this assay. 

Neuromuscular transmission, assayed by 
recording compound muscle action poten- 
tials (CMAPs) during repetitive nerve stim- 
ulation (32). was more sensitive to curare in . ,, 

heterozygous animals than in their wild- 
m e  littermates. Incremental doses of d- 

3 .  

tubocurarine, an AChR antagonist, were 
intraperitoneally administered at 10-min 
intervals while trains of stimuli were deliv- 
ered at 1-min intervals. In the experiment 
shown in Fig. 2, CMAPs recorded from the 
heterozygous mouse began to decrease in 
amplitude 6 min after the 280 nmol per 
kilogram of body weight (nmol/kg) pulse of 
curare. whereas those recorded from the 
wild-type littermate did not decrease until 6 
min after the 1120 nmol/kg dose. A decre- 
ment in CMAP amplitude reflects the pro- 
gressive dro~out  of individual muscle fibers 
as the evokLd endplate potential drops be- 
low the threshold of action potential gen- 
eration. We observed CMAP decreases at 
significantly lower curare concentrations in 
the heterozygote mouse in four of the five 
littermate pairs studied. In one pair, the 
difference was minimal (only 4 min earlier 

Fig. 2. The safety factor 
of neuromuscular trans- 
mission is reduced in het- 
erozygote mice as com- 
pared with that in wild- 
type mice. CMAPs re- 
corded from forelimb 
flexor muscles of a het- 
erozygote mouse (A) and 
of a wild-type littermate 
(B) in response to 30-Hz 
stimulation of the ipsilat- 
era1 brachial plexus (8, 
70, 72, 13, 37). Both 
records were obtained 4 
min after the 560 nmollkg 
dose of intraperitoneal 
curare. (C) Complete, 
timed, incremental dose- 
response curves. Incre- 
mental doses of curare 
@old numbers) were ad- 
ministered at 10-min in- 

in the heterozygote animal) and probably 
insignificant. In the absence of curare, there 
was no significant decrease in the CMAP 
amplitude during 3- to 30-Hz trains of 10 
stimuli delivered to mice of either genotype. 

In a separate set of experiments, single 
doses of d-tubocurarine were administered 
to heterozygote and wild-type mice, and 
trains of CMAP amplitudes were recorded 
at 1-min intervals for a period of 30 min. In 
six of seven heterozygote mice (86%), a 
single intraperitoneal dose of 300 nmol/kg 
produced at least a 10% decrement between 
the second and sixth CMAP, whereas only 
two of seven wild-type animals (29%) ex- 
hibited the same CMAP decrease at that 
dose. Thus, the safety factor of synaptic 
transmission at heterozygote endplates was 
reduced, which is consistent with a deficit 
in the postsynaptic density of AChRs in 
these animals. 

We tested the postsynaptic sensitivity to 
ACh by measuring the amplitude of spon- 
taneous miniature endplate potentials 
(MEPPs) with intracellular microelectrodes 
in isolated diaphragm-phrenic nerve prepa- 
rations (33). As illustrated in Fig. 3, A and 
B, the mean MEPP was reduced at hetero- 
zygote endplates as compared with wild- 
type controls. Table 1 summarizes the re- 
sults from four wild-type and four heterozy- 
gous mice. O n  average, there was an ap- 
proximately 30% reduction in MEPP size 
(v. 1. This difference could not be attributed . L, 

to a disparity of resting membrane potential 
(V,,,), nor could it be due to differences in 

tervals, whereas CMAP - 4 J . :  . ;  , , . . :  . . .  : . . . . :  . .  : , ,  , , , , I  
2468 2468 2468 2468 2468 246810l2 

responses were record- Time after dose (min) 
ed at 2-min intervals. The 35 70 140 280 560 1120 
percent decrement is Curare dose (nmolkg) 
based on the amplitudes 
of the second and sixth CMAPs during the 30-Hz trains. CMAPs do decrease in wild-type animals, but do 
so after a delay and an additional, higher dose of curare. 
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Table 1. Summary of synaptic potentials recorded from wild-type and heterozygous mice. 

v,, (mv) V l  (mV) t,,,, (ms) v", (mV) "'1 '7'2 

Wild-type (n = 4 mice) 
2.33 2 0.23 (n = 19) 1.05 ? 0.04 (n = 19) 0.97 -t 0.04 (n = 19) -64 2 4 (n = 19) 2.23 ? 0.21 (n = 19) 3.48 ? 0.35 (n = 19) 

Heterozygote (n = 4 mice) 
3.0V ? 0.22 (n = 30) 0.76* 5 0.02 (n = 32) 0.95 ? 0.04 (n = 30) -63 ? 2 (n = 32) 4.03* 5 0.28 (n = 30) 6.48* ? 0.48 (n = 30) 

'P  < 0.05; different from wild-type value. 

placement of the recording electrode rela- 
tive to the endplate, because the mean rise 
times of the synaptic potentials (tlo-,,) 
were virtually identical (Table 1). 

More direct evidence for a reduction in 
overall endplate AChR density was ob- 
tained in a-bungarotoxin binding experi- 
ments (34). Freshly dissected diaphragms 
were exposed to saturating concentrations 
of 1251-bungarotoxin. In one set of experi- 
ments, the diaphragms were cut into end- 
plate-rich strips, and the radioactivity was 
determined in a gamma counter. There 
were approximately 30% fewer specific 
counts per minute (total counts per minute 
minus counts per minute bound in the pres- 
ence of excess unlabeled a-bunearotoxin) c, 

in the endplate-rich hemidiaphragm strips 
of heterozygote animals as compared with 
those of wild-type animals [8756 2 765 
cpm, mean 2 SEM, n = 6; versus 12,462 2 
949 cpm, n = 6 (P = 0.012)]. In another set 
of experiments, the diaphragms were teased 
into fascicles of fewer than five muscle fi- 
bers and processed for autoradiography. 
Clusters of erains were less dense in dia- 

.7 

phragms from heterozygote animals than in 
those from wild-type animals (Fig. 3C). 
Morphometric analysis of 49 endplates from 
three wild-tme animals and 69 endvlates , L 

from three heterozygote animals showed 
some overlap between the two samples. 
However, the ratio of the mean grain den- 
sities was 51%, and this reduction was high- 

ly significant (P < 0.001). Each measure- 
ment and the means of each group are 
shown in Fig. 3D. Our results show that 
AChRs are reduced in number at the neu- 
romuscular junctions of mice that are defi- 
cient in Ig-containing neuregulins as com- 
pared with those of wild-type mice. 

Nerve-evoked endplate potentials 
(EPPs) were studied under conditions of 
elevated (12 mM) extracellular Mg2+ (33), 
which reduces the probability (p) of ACh 
release. Surprisingly, the mean evoked EPP 
response was not reduced at heterozygote 
endplates (Table 1). Because quantal size is 
reduced, this implies that more quanta are 
released per impulse from heterozygote than 
from wild-tme motor nerve terminals. In , . 
fact, the mean quantal content calculated 
from the ratio of mean EPPImean MEPP 
was twice as large in heterozygote as com- 
pared with wild-type endplates (m, in Table 
1). The difference in mean quantal content 
is also reflected in the paucity of failures at 
heterozygote endplates as compared with 
wild-type endplates (Fig. 4A). In fact, many 
heterozygote endplates showed no failures 
at all during 300 pulses, precluding the cal- 
culation of mean quantal content (m) by 
the method of failures (m = In N/no) based 
on Poisson statistics. We used another esti- 
mate of m that does not rely on the use of 
failure number. If Poisson statistics apply, 
then the mean quantal content (m2) is 
equal to 1/CV2, where CV is the coefficient 

MEPP arnplltude 

of variation. Estimates of m2 showed an 
approximately twofold increase at heterozy- 
gote endplates as compared with wild-type 
endplates (Table 1). Figure 4B illustrates 
the disparity between wild-type and hetero- 
zygote endplates. The close correlation be- 
tween the values form, and m2 suggests that 
Poisson statistics did apply under our con- 
ditions. On the basis of independent esti- 
mates of m, we conclude that presynaptic 
nerve terminals appear to compensate for 
reduced postsynaptic ACh sensitivity by in- 
creasing the number of quanta released per 
pulse. 

The increase in mean auantal content 
might be due to the compensatory sprouting 
of motor nerve terminals. However, we 
found no evidence of an increase in end- 
plate size, as estimated by cholinesterase 
staining of teased muscle fibers (35) (Fig. 
4C). 

Despite the increase i n  mean quantal 
content and the relatively normal EPP 
amplitudes at heterozygote endplates, the 
population response (CMAP) declined 
during repetitive stimulation at lower dos- 
es of curare in the heterozygote animals. 
This is not unexpected, given the direct 
relation between the rate of decline of 
transmitter release at neuromuscular junc- 
tions and the initial mean quantal content 
(36). When stimulated at a rate of 25 Hz, 
neuromuscular junctions in the heterozy- 
gote mice fatigued more rapidly than in 

R 
Fig. 3. AChR number is reduced at heterozygote endplates as compared with wild-type endplates. (A) Examples 6 

of stimulus-evoked and spontaneous synapt~c potentials recorded from endplates of w~ld-type (+/+) and hetero- looO ' 3 

zygote (+/-) mice. MEPPs were often seen following nerve-evoked EPPs. The MEPP amplitudes (v,)  can be 
directly compared at these two endplates, because the resting membrane potentials are equivalent. jB) Amplitude C 

0- - - 
histograms of MEPPs recorded at the same endplates. (C) Autoradiography of teased muscle fibers labeled with 
1251-a-bungarotoxin. (D) Estimates of AChR density obtained at individual endolates are shown as open symbols. + / +  + / -  

and the means adjacent to each column are shown as solid circles. Bars Indicate standard errors. The ordinate 
shows the number of pixels below a preselected threshold (34). 
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wild-type mice (37) (Fig. 5). In these ex- 
periments, extracellular Mg++ was re- 
duced from 12 mM to physiologic levels (1 
mM), so that neurotransmitter release was 
not suppressed. The size of EPPs was re- 
duced with concentrations of d-tubocura- 
rine just sufficient to block action poten- 
tial generation. 

w e  have shown that neuregulin-defi- 
cient mice have a reduced safety factor of 
neuromuscular transmission. Intracellular 
microelectrode recordings of MEPP ampli- 
tudes, as well as measurements of 1251-a- 
bungarotoxin binding, indicate that the 
mvasthenia is due to the loss of AChRs 
from the postsynaptic muscle membrane. 
Our data ~rovide the most direct evidence 
to date that neuregulins play a crucial role 
in maintaining AChR number at motor 
endplates in vivo. 

The heterozveote knockout animals , - 
studied here appear to express diminished 
levels only of neuregulin isoforms with an 
Ig-like domain. These isoforms represent a 
small minority of the total, and the re- 
mainder (that is, forms that substitute the 
Ig-like domain with the Cys-rich motif) 
are presumably biologically active. Our re- 
sults suggest that Ig-containing isoforms of 
neuregulin are present in limiting amounts 
at neuromuscular junctions and are crucial 
in maintaining postsynaptic AChR densi- 
ty at neuromuscular junctions. This may 
be the result of the immobilization of this 
isoform to extracellular matrix compo- 
nents of the synaptic cleft. Thus, although 
the EGF-like domain appears to be suffi- 

the free ligand may be less effective in 
influencing synapse formation in vivo, 
perhaps because it cannot be concentrated 
near its site of action. 

We observed an increase in the release 
of ACh at the neuromuscular junctions of 
heterozygous animals, an apparent com- 
pensatory response to the loss of postsyn- 
aptic ACh sensitivity, which is mediated 
by an unknown retrograde signal. A simi- 
lar phenomenon has been observed in an 
experimental model of myasthenia gravis 

0 80 160 240 320 
Time (ms) 

Fig. 5. Evoked EPPs decay more rapidly at het- 
erozygote endplates (open triangles) than at wild- 
type endplates (solid circles). These experiments 
were recorded in normal Mg2+ (1 mM) with syn- 
aptic transmission blocked by curare. EPP ampli- 
tudes were normalized to the highest amplitude 
obtained during the tetanus, which was delivered 
at 25 Hz. Each point on the wild-type curve rep- 
resents the mean of 29 endplates in nine mice, 
and each point on the heterozygote curve repre- 
sents the mean of 35 endplates in nine mice. As- 

cient for activating neuregulin receptors, terisks mark significant differences (P < 0.05). 

(38) and in biopsies of human muscle from 
patients with myasthenia gravis (39). The 
augmented transmitter release, although 
adequately compensating for the loss of 
AChRs during low rates of motor nerve 
stimulation. increases the likelihood of 

Fig. 4. The number of A 
quanta released per im- 60. + I +  + I -  

60. 

synaptic failure during prolonged, high 
rates of stimulation. The compensation 
was not caused by an enlargement of the 
endplate. Thus, the increased quantal 
content of nerve-evoked ACh release in 
the heterozygote animals probably reflects 
an increase in the amount of ACh released 
per unit length of nerve terminal. It re- 
mains to be determined whether this is the 

pulse is increased at het- - a 

result of an increase in the number of 
release sites or of an increase in the mob- 

7 

ability of release at each site. 
Our results im~lv  that the continued 

50- 
m 

erozygote endplates as 5 50. 

compared with wild-type 2 40 $ 40. 
"- controls. (A) Amplitude his- 

tograms of nerve-evoked R 

EPPs recorded in high ex- 
tracellular Mg2+. The 5 10. 
shaded bar indicates the 0 1 2 3 4 5 6 7 1  1 3 4 5 6 7 8  
number of failures (no re- EPP amplitude (mV] ~mplitude (mV) 
sponse after nerve stimu- 
lation). (B) Mean quantum B 
content calculated as 144 
1 /(CV)2 (m,) as a function 
of mean quantum content 
calculated as mean V,,,/ 
mean v, (m,). The quantal 
content calculated by ei- 
ther method is higher at 
heterozygote endplates 
(open triangles) than at 
wild-type endplates (solid 
ovals). The slope of this re- m1 
lation is slightly greater than 1, probably because the smallest MEPPs disappear into the noise, leading 
to an underestimate of m,; and because the smallest evoked responses are also lost, leading to an 
overestimate of m,. (C) Overall endplate size, revealed by cholinesterase histochemistry, does not differ 
between wild-type and heterozygote animals. 

- ,  

activation of AChR genes in subsynaptic 
nuclei bv neureeulin is critical for the main- 
tenance' of pos;synaptic AChR density at 
adult endplates, despite the decrease in 
AChR turnover during development and 
despite the ability of agrin to immobilize 
AChRs in the synapse. In fact, neuregulin- 
like immunoreactivity remains high at adult 
neuromuscular junctions (15, 18). The fact 
that the decrease in neuregulin gene expres- 
sion is roughly proportional to the loss of 
AChR number at endplates implies that 
postsynaptic ACh responses are closely 
linked to the rate of AChR synthesis and 
insertion into the postsynaptic membrane 
(2). We do not yet know when the deficit 
in neuromuscular transmission first be- 
comes evident in the neureeulin-deficient 

.7 

mice during development. Indeed, neuregu- 
lin eenes are ex~ressed in motor neurons c, 

early enough to affect initial neuromuscular 
synapse formation (8, 12, 13). Studies of 
neuregulin-deficient mice during develop- 
ment will shed light on when neuregulin 
action first becomes essential at neuromus- 
cular junctions. 
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